
RsInstrument Python
Release 1.70.0

Rohde & Schwarz

Apr 29, 2024

CONTENTS:

1 Revision History 3
1.1 RsInstrument . 3

2 Welcome to the RsInstrument Python Step-by-step Guide 9

3 1. Introduction 11

4 2. Installation 13
4.1 Option 1 - Installing with pip.exe under Windows . 13
4.2 Option 2 - Installing in Pycharm . 13
4.3 Option 3 - Offline installation . 13

5 3. Finding available instruments 15

6 4. Initiating instrument session 17
6.1 Standard Session Initialization . 17
6.2 Selecting specific VISA . 18
6.3 No VISA Session . 19
6.4 Simulating Session . 19
6.5 Shared Session . 20

7 5. Basic I/O communication 21

8 6. Error Checking 25

9 7. Exception Handling 27
9.1 7.1 Error Context Managers . 28

10 8. OPC-synchronized I/O Communication 31

11 9. Querying Arrays 33
11.1 Querying Float Arrays . 33
11.2 Querying Integer Arrays . 34

12 10. Querying Binary Data 37
12.1 Querying to bytes . 37
12.2 Querying to PC files . 37

13 11. Writing Binary Data 39
13.1 Writing from bytes data . 39
13.2 Writing from PC files . 39

i

14 12. Transferring Files 41
14.1 Instrument -> PC . 41
14.2 PC -> Instrument . 41

15 13. Transferring Big Data with Progress 43

16 14. Multithreading 45
16.1 One instrument session, accessed from multiple threads . 45
16.2 Shared instrument session, accessed from multiple threads . 46
16.3 Multiple instrument sessions accessed from multiple threads . 47

17 15. Logging 49
17.1 Logging to console . 49
17.2 Logging to files . 50
17.3 Integration with Python’s logging module . 51
17.4 Logging from multiple sessions . 52
17.5 Logging to UDP . 53
17.6 Logging from all instances . 54
17.7 Logging only errors . 56
17.8 Setting the logging format . 57

18 RsInstrument package 59
18.1 Modules . 59
18.2 RsInstrument.RsInstrument . 59
18.3 Module contents . 69

19 RsInstrument.logger 71

20 RsInstrument.events 75

21 Index and search 77

Python Module Index 79

Index 81

ii

RsInstrument Python, Release 1.70.0

CONTENTS: 1

RsInstrument Python, Release 1.70.0

2 CONTENTS:

CHAPTER

ONE

REVISION HISTORY

1.1 RsInstrument

RsInstrument module provides convenient way of communicating with R&S instruments.

Basic Hello-World code:

from RsInstrument import *

instr = RsInstrument('TCPIP::192.168.56.101::hislip0', id_query=True, reset=True)
idn = instr.query_str('*IDN?')
print('Hello, I am: ' + idn)

Check out the full documentation on ReadTheDocs.

Our public Rohde&Schwarz Github repository hosts many examples using this library. If you’re looking for examples
with specific instruments, check out the ones for Oscilloscopes, Powersensors, Powersupplies, Spectrum Analyzers,
Vector Network Analyzers.

1.1.1 Version history:

Version 1.70.0.102 (26.04.2024)
• To all query_str_list_xxx() methods, added non-mandatory parameter ‘re-

move_blank_response’.

• Logger: added new variable to the format string: %SCPI_COMMAND%, where you can only
log SCPI commands to your log data.

• Added Context-managers for ignoring errors and ignoring VISA Timeouts:

Any Instrument error in the context is ignored
with io.instr_err_suppressor() as supp:

io.write("*RSaT")
if supp.get_errors_occurred():

(continues on next page)

3

https://pypi.org/project/RsInstrument/
https://rsinstrument.readthedocs.io/
https://pypi.python.org/pypi/rsinstrument/
https://img.shields.io/pypi/pyversions/pybadges.svg
https://pypi.python.org/pypi/rsinstrument/
https://rsinstrument.readthedocs.io/
https://github.com/Rohde-Schwarz/Examples/tree/main/Misc/Python/RsInstrument
https://github.com/Rohde-Schwarz/Examples/tree/main/Oscilloscopes/Python/RsInstrument
https://github.com/Rohde-Schwarz/Examples/tree/main/Powersensors/Python/RsInstrument
https://github.com/Rohde-Schwarz/Examples/tree/main/Powersupplies/Python/RsInstrument
https://github.com/Rohde-Schwarz/Examples/tree/main/SpectrumAnalyzers/Python/RsInstrument
https://github.com/Rohde-Schwarz/Examples/tree/main/VectorNetworkAnalyzers/Python/RsInstrument

RsInstrument Python, Release 1.70.0

(continued from previous page)

print("Error(s) suppressed")

Any Timeout error in the context is ignored
with io.visa_tout_suppressor(500) as supp:

io.write("*IDaN")
if supp.get_timeout_occurred():

print("VISA Timeout suppressed")

• Added to Utilities interface: query_str_list(), query_str_list_with_opc(), query_bool_list(),
query_bool_list_with_opc().

• Added Utility functions: value_to_si_string(), size_to_kb_mb_gb_string().

• Changed behaviour of the Conversion functions to list:
– str_to_float_list()

– str_to_float_or_bool_list()

– str_to_int_list()

– str_to_int_or_bool_list()

– str_to_bool_list()

These functions previously returned a list of one element if the input value was
whitespace-only string. Now, in such case they return empty list.

Version 1.61.0.101 (27.02.2024)
• Added settings profile ‘XK41’ for R&S Software Defined Radios.

• Added settings ‘FirstCmds’ where you can send the defined commands right after the init. Send
more commands in a row with ‘;;’ separator.

• Added settings ‘EachCmdPrefix’ - this prefix is added to each command sent to the instrument.
Supported values are also ‘lf’, ‘cr’, ‘tab’.

Version 1.60.0.100 (31.01.2024)
• Fixed SocketIo session for cases when the instrument connection is lost in the middle of reading

a response.

• Fixed VisaPluginSocketIo read() method for cases where the session is lost. The method now
generates exception in that case.

• Added settings OpcSyncQueryMechanism with changed default value to
‘only_check_mav_err_queue’.

• Added settings ‘OpcSyncQueryMechanism’ with values: Standard, AlsoCheckMav, ClsOnly-
CheckMavErrQueue, OnlyCheckMavErrQueue.

Version 1.55.0.99 (29.09.2023)
• Added logger convenient methods start() and stop().

• Added lock_resource() and unlock_resource() methods for device-site locking.

• Added Context-manager interface to the RsInstrument class. Now you can use it as follows:

with RsInstrument("TCPIP::192.168.1.101::hislip0") as io:
io.reset()

4 Chapter 1. Revision History

RsInstrument Python, Release 1.70.0

Version 1.54.0.98 (27.06.2023)
• Added new options profile for ATS chambers.

• Added settings boolean token EachCmdAsQuery. Example: EachCmdAsQuery=True. Default:
False.

Version 1.53.1.97 (28.03.2023)
• Fixed decoding custom Status Register bits.

Version 1.53.0.96 (18.10.2022)
• Improved mode where the instrument works with a session from another object.

• Silently ignoring invalid *IDN? string.

• Added new options profile ‘Minimal’ for non-SCPI-99 instruments.

Version 1.52.0.94 (28.09.2022)
• Fixed DisableOpcQuery=True settings effect.

• Increased DataChunkSize from 1E6 to 1E7 bytes.

• Improved robustness of the TerminationCharacter option value entry.

• Added new options profile for CMQ500: ‘Profile=CMQ’.

Version 1.51.1.93 (09.09.2022)
• Fixed go_to_local() / go_to_remote() for VXI-capable sessions.

Version 1.51.0.92 (08.09.2022)
• Changed the accepted IDN? response to more permissive.

• Removed build number from the package version.

• Added constructor options boolean token VxiCapable. Example: VxiCapable=False. Default:
True (coerced later to false based on a session type).

• Added methods go_to_remote() and go_to_local().

• Added methods file_exists() and get_file_size().

Version 1.50.0.90 (23.06.2022)
• Added relative timestamp to the logger.

• Added RsInstrument class variables for logging making it possible to define common target and
reference timestamp for all instances.

• Logger stream entries are by default immediately flushed, making sure that the log is complete.

• Added time statistic methods get_total_execution_time(), get_total_time(), re-
set_time_statistics().

Version 1.24.0.83 (03.06.2022)
• Changed parsing of SYST:ERR? response to tolerate +0,”No Error” response.

• Added constructor options integer token OpenTimeout. Example: OpenTimeout=5000. Default:
0.

• Added constructor options boolean token ExclusiveLock. Example: ExclusiveLock=True. De-
fault: False.

Version 1.23.0.82 (25.05.2022)

1.1. RsInstrument 5

RsInstrument Python, Release 1.70.0

• Added stripping of trailing commas when parsing the idn response.

• If the Resource Manager does not find any default VISA implementation, it falls back to R&S
VISA - relevant for LINUX and MacOS.

• Other typos and formatting corrections.

• Changed parsing of SYST:ERR? response to tolerate +0,”No Error” response.

Version 1.22.0.80 (21.04.2022)
• Added optional parameter timeout to reset().

• Added query list methods: query_str_list, query_str_list_with_opc, query_bool_list,
query_bool_list_with_opc.

• Added query_str_stripped for stripping string responses of quotes.

Version 1.21.0.78 (15.03.2022)
• Added logging to UDP port (49200) to integrate with new R&S Instrument Control plugin for

Pycharm.

• Improved documentation for logging and Simulation mode sessions.

Version 1.20.0.76 (19.11.2021)
• Fixed logging strings when device name was a substring of the resource name.

Version 1.19.0.75 (08.11.2021)
• Added setting profile for non-standard instruments. Example of the options string: op-

tions=’Profile=hm8123’.

Version 1.18.0.73 (15.10.2021)
• Added correct conversion of strings with SI suffixes (e.g.: MHz, KHz, THz, GHz, ms, us) to

float and integer.

Version 1.17.0.72 (31.08.2021)
• Changed default encoding of string<=>bin from utf-8 to charmap.

• Added settable encoding for the session. Property: RsInstrument.encoding.

• Fixed logging to console when switched on after init - the cached init entries are now properly
flushed and displayed.

Version 1.16.0.69 (17.07.2021)
• Improved exception handling in cases where the instrument session is closed.

Version 1.15.0.68 (12.07.2021)
• Scpi logger time entries now support not only datetime tuples, but also float timestamps.

• Added query_all_errors_with_codes() - returning list of tuples (message: str, code: int).

• Added logger.log_status_check_ok property. This allows for skipping lines with ‘Status check:
OK’.

Version 1.14.0.65 (28.06.2021)
• Added SCPI Logger.

• Simplified constructor’s options string format - removed DriverSetup=() syntax. Instead of “Dri-
verSetup=(TerminationCharacter=’n’)”, you use “TerminationCharacter=’n’”. The original for-
mat is still supported.

6 Chapter 1. Revision History

RsInstrument Python, Release 1.70.0

• Fixed calling SYST:ERR? even if STB? returned 0.

• Replaced @ni backend with @ivi for resource manager - this is necessary for the future pyvisa
version 1.12+.

Version 1.13.0.63 (09.06.2021)
• Added methods reconnect(), is_connection_active().

Version 1.12.1.60 (01.06.2021)
• Fixed bug with error checking when events are defined.

Version 1.12.0.58 (03.05.2021)
• Changes in Core only.

Version 1.11.0.57 (18.04.2021)
• Added aliases for the write_str. . . and query_str. . . methods:

– write() = write_str()

– query() = query_str()

– write_with_opc() = write_str_with_opc()

– query_with_opc() = query_str_with_opc()

Version 1.9.1.54 (20.01.2021)
• query_opc() got additional non-mandatory parameter ‘timeout’.

• Code changes only relevant for the auto-generated drivers.

Version 1.9.0.52 (29.11.2020)
• Added Thread-locking for sessions. Related new methods: get_lock(), assign_lock(),

clear_lock().

• Added read-only property ‘resource_name’.

Version 1.8.4.49 (13.11.2020)
• Changed Authors and copyright.

• Code changes only relevant for the auto-generated drivers.

• Extended Conversions method str_to_str_list() by parameter ‘clear_one_empty_item’ with de-
fault value False.

Version 1.8.3.46 (09.11.2020)
• Fixed parsing of the instrument errors when an error message contains two double quotes.

Version 1.8.2.45 (21.10.2020)
• Code changes only relevant for the auto-generated drivers.

• Added ‘UND’ to the list of float numbers that are represented as NaN.

Version 1.8.1.41 (11.10.2020)
• Fixed Python 3.8.5+ warnings.

• Extended documentation, added offline installer.

• Filled package’s __init__ file with the exposed API. This simplifies the import statement.

Version 1.7.0.37 (01.10.2020)

1.1. RsInstrument 7

RsInstrument Python, Release 1.70.0

• Replaced ‘import visa’ with ‘import pyvisa’ to remove Python 3.8 pyvisa warnings.

• Added option to set the termination characters for reading and writing. Until now, it was fixed to
‘\n’ (Linefeed). Set it in the constructor ‘options’ string: DriverSetup=(TerminationCharacter =
‘\r’). Default value is still ‘\n’.

• Added static method RsInstrument.assert_minimum_version() raising assertion exception if the
RsInstrument version does not fulfill at minimum the entered version.

• Added ‘Hameg’ to the list of supported instruments.

Version 1.6.0.32 (21.09.2020)
• Added documentation on readthedocs.org.

• Code changes only relevant for the auto-generated drivers.

Version 1.5.0.30 (17.09.2020)
• Added recognition of RsVisa library location for linux when using options string ‘SelectVisa=rs’.

• Fixed bug in reading binary data 16 bit.

Version 1.4.0.29 (04.09.2020)
• Fixed error for instruments that do not support *OPT? query.

Version 1.3.0.28 (18.08.2020)
• Implemented SocketIO plugin which allows the remote-control without any VISA installation.

• Implemented finding resources as a static method of the RsInstrument class.

Version 1.2.0.25 (03.08.2020)
• Fixed reading of long strings for NRP-Zxx sessions.

Version 1.1.0.24 (16.06.2020)
• Fixed simulation mode switching.

• Added Repeated capability.

Version 1.0.0.21
• First released version.

8 Chapter 1. Revision History

CHAPTER

TWO

WELCOME TO THE RSINSTRUMENT PYTHON STEP-BY-STEP GUIDE

9

RsInstrument Python, Release 1.70.0

10 Chapter 2. Welcome to the RsInstrument Python Step-by-step Guide

CHAPTER

THREE

1. INTRODUCTION

RsInstrument is a Python remote-control communication module for Rohde & Schwarz SCPI-based Test and Measure-
ment Instruments. After reading this guide you will be convinced of its edge over other remote-control packages.

The original title of this document was “10 Tips and Tricks. . . ”, but there were just too many cool features to fit into
10 chapters. Some of the RsInstrument’s key features:

• Type-safe API using typing module

• You can select which VISA to use or even not use any VISA at all

• Initialization of a new session is straight-forward, no need to set any other properties

• Many useful features are already implemented - reset, self-test, opc-synchronization, error checking, option
checking

• Binary data blocks transfer in both directions

• Transfer of arrays of numbers in binary or ASCII format

• File transfers in both directions

• Events generation in case of error, sent data, received data, chunk data

• Multithreading session locking - you can use multiple threads talking to one instrument at the same time

• Logging feature tailored for SCPI communication

Check out RsInstrument script examples here: Rohde & Schwarz GitHub Repository.

Short Getting-started video from our Oscilloscope guys:

Oh, one other thing - for Pycharm users we just released a Remote-control Plugin that makes your Pycharm development
of remote-control script much faster:

11

https://github.com/Rohde-Schwarz/Examples/tree/main

RsInstrument Python, Release 1.70.0

12 Chapter 3. 1. Introduction

https://rsicpycharmplugin.readthedocs.io

CHAPTER

FOUR

2. INSTALLATION

RsInstrument is hosted on pypi.org. You can install it with pip (for example pip.exe for Windows), or if you are using
Pycharm (and you should be :-) direct in the Pycharm packet management GUI.

4.1 Option 1 - Installing with pip.exe under Windows

• Start the command console: WinKey + R, type cmd and hit ENTER

• Change the working directory to the Python installation of your choice (adjust the user name and python version
in the path):

cd c:\Users\John\AppData\Local\Programs\Python\Python310\Scripts

• install RsInstrument with the command: pip install RsInstrument

4.2 Option 2 - Installing in Pycharm

• In Pycharm Menu File->Settings->Project->Python Interpreter click on the ‘+’ button on the top left.
Newer Pycharm versions have Python Packages Tool Window, you can perform the same operation there.

• Type rsinstrument in the search box

• Install the version 1.53.0 or newer

• If you are behind a Proxy server, configure it in the Menu: File->Settings->Appearance->System
Settings->HTTP Proxy

For more information about Rohde & Schwarz instrument remote control, check out our Instrument remote control
series: Rohde&Schwarz remote control Web series

4.3 Option 3 - Offline installation

If you are reading this, it is probably because none of the above worked for you - proxy problems, your boss saw the
internet bill. . . Here are 5 easy steps for installing RsInstrument offline:

• Download this python script (Save target as): rsinstrument_offline_install.py

• Execute the script in your offline computer (supported is python 3.6 or newer)

• That’s it . . .

• Just watch the installation . . .

13

https://pypi.org/search/?q=rsinstrument
https://www.rohde-schwarz.com/driver-pages/remote-control/drivers-remote-control_110753.html
https://cdn.rohde-schwarz.com/pws/service_support/driver_pagedq/files_1/helloworld/rsinstrument_offline_install.py

RsInstrument Python, Release 1.70.0

• Enjoy . . .

14 Chapter 4. 2. Installation

CHAPTER

FIVE

3. FINDING AVAILABLE INSTRUMENTS

Similar to the pyvisa’s ResourceManager, RsInstrument can search for available instruments:

""""
Find the instruments in your environment
"""

from RsInstrument import *

Use the instr_list string items as resource names in the RsInstrument constructor
instr_list = RsInstrument.list_resources("?*")
print(instr_list)

If you have more VISAs installed, the one actually used by default is defined by a secret widget called VISA Conflict
Manager. You can force your program to use a VISA of your choice:

"""
Find the instruments in your environment with the defined VISA implementation
"""

from RsInstrument import *

In the optional parameter visa_select you can use e.g.: 'rs' or 'ni'
Rs Visa also finds any NRP-Zxx USB sensors
instr_list = RsInstrument.list_resources('?*', 'rs')
print(instr_list)

Tip: We believe our R&S VISA is the best choice for our customers. Couple of reasons why:

• Small footprint

• Superior VXI-11 and HiSLIP performance

• Integrated legacy sensors NRP-Zxx support

• Additional VXI-11 and LXI devices search

• Available for Windows, Linux, Mac OS

15

RsInstrument Python, Release 1.70.0

16 Chapter 5. 3. Finding available instruments

CHAPTER

SIX

4. INITIATING INSTRUMENT SESSION

RsInstrument offers four different types of starting your remote-control session. We begin with the most typical case,
and progress with more special ones.

6.1 Standard Session Initialization

Initiating new instrument session happens, when you instantiate the RsInstrument object. Below, is a Hello World
example. Different resource names are examples for different physical interfaces.

"""
Basic example on how to use the RsInstrument module for remote-controlling your VISA␣
→˓instrument
Preconditions:

- Installed RsInstrument Python module Version 1.50.0 or newer from pypi.org
- Installed VISA e.g. R&S Visa 5.12 or newer

"""

from RsInstrument import *

A good practice is to assure that you have a certain minimum version installed
RsInstrument.assert_minimum_version('1.50.0')
resource_string_1 = 'TCPIP::192.168.2.101::INSTR' # Standard LAN connection (also␣
→˓called VXI-11)
resource_string_2 = 'TCPIP::192.168.2.101::hislip0' # Hi-Speed LAN connection - see␣
→˓1MA208
resource_string_3 = 'GPIB::20::INSTR' # GPIB Connection
resource_string_4 = 'USB::0x0AAD::0x0119::022019943::INSTR' # USB-TMC (Test and␣
→˓Measurement Class)
resource_string_5 = 'RSNRP::0x0095::104015::INSTR' # R&S Powersensor NRP-Z86

Initializing the session
instr = RsInstrument(resource_string_1)

idn = instr.query_str('*IDN?')
print(f"\nHello, I am: '{idn}'")
print(f'RsInstrument driver version: {instr.driver_version}')
print(f'Visa manufacturer: {instr.visa_manufacturer}')
print(f'Instrument full name: {instr.full_instrument_model_name}')
print(f'Instrument installed options: {",".join(instr.instrument_options)}')

(continues on next page)

17

RsInstrument Python, Release 1.70.0

(continued from previous page)

Close the session
instr.close()

Note: If you are wondering about the ASRL1::INSTR - yes, it works too, but come on. . . it’s 2023 :-)

Do not care about specialty of each session kind; RsInstrument handles all the necessary session settings for you. You
have immediately access to many identification properties. Here are same of them:

idn_string: str
driver_version: str
visa_manufacturer: str
full_instrument_model_name: str
instrument_serial_number: str
instrument_firmware_version: str
instrument_options: List[str]

The constructor also contains optional boolean arguments id_query and reset:

instr = RsInstrument('TCPIP::192.168.56.101::hislip0', id_query=True, reset=True)

• Setting id_query to True (default is True) checks, whether your instrument can be used with the RsInstrument
module.

• Setting reset to True (default is False) resets your instrument. It is equivalent to calling the reset() method.

If you tend to forget closing the session, use the context-manager. The session is closed even if the block inside with
raises an exception:

"""
Using Context-Manager for you RsInstrument session.
No matter what happens inside of the 'with' section, your session is always closed␣
→˓properly.
"""

from RsInstrument import *

RsInstrument.assert_minimum_version('1.55.0')
with RsInstrument('TCPIP::192.168.2.101::hislip0') as instr:

idn = instr.query('*IDN?')
print(f"\nHello, I am: '{idn}'")

6.2 Selecting specific VISA

Same as for the list_resources() function , RsInstrument allows you to choose which VISA to use:

"""
Choosing VISA implementation
"""

from RsInstrument import *
(continues on next page)

18 Chapter 6. 4. Initiating instrument session

RsInstrument Python, Release 1.70.0

(continued from previous page)

Force use of the Rs Visa. For e.g.: NI Visa, use the "SelectVisa='ni'"
instr = RsInstrument('TCPIP::192.168.56.101::INSTR', True, True, "SelectVisa='rs'")

idn = instr.query_str('*IDN?')
print(f"\nHello, I am: '{idn}'")
print(f"\nI am using the VISA from: {instr.visa_manufacturer}")

Close the session
instr.close()

6.3 No VISA Session

We recommend using VISA whenever possible, preferably with HiSLIP session because of its low latency. However,
if you are a strict VISA-refuser, RsInstrument has something for you too:

No VISA raw LAN socket:

"""
Using RsInstrument without VISA for LAN Raw socket communication
"""

from RsInstrument import *

instr = RsInstrument('TCPIP::192.168.56.101::5025::SOCKET', True, True, "SelectVisa=
→˓'socket'")
print(f'Visa manufacturer: {instr.visa_manufacturer}')
print(f"\nHello, I am: '{instr.idn_string}'")
print(f"\nNo VISA has been harmed or even used in this example.")

Close the session
instr.close()

Warning: Not using VISA can cause problems by debugging when you want to use the communication Trace
Tool. The good news is, you can easily switch to use VISA and back just by changing the constructor arguments.
The rest of your code stays unchanged.

6.4 Simulating Session

If a colleague is currently occupying your instrument, leave him in peace, and open a simulating session:

instr = RsInstrument('TCPIP::192.168.56.101::hislip0', True, True, "Simulate=True")

More option_string tokens are separated by comma:

instr = RsInstrument('TCPIP::192.168.56.101::hislip0', True, True, "SelectVisa='rs',␣
→˓Simulate=True")

6.3. No VISA Session 19

RsInstrument Python, Release 1.70.0

Note: Simulating session works as a database - when you write a command SENSe:FREQ 10MHz, the query
SENSe:FREQ? returns 10MHz back. For queries not preceded by set commands, the RsInstrument returns default
values:

• ‘Simulating’ for string queries.

• 0 for integer queries.

• 0.0 for float queries.

• False for boolean queries.

6.5 Shared Session

In some scenarios, you want to have two independent objects talking to the same instrument. Rather than opening a
second VISA connection, share the same one between two or more RsInstrument objects:

"""
Sharing the same physical VISA session by two different RsInstrument objects
"""

from RsInstrument import *

instr1 = RsInstrument('TCPIP::192.168.56.101::INSTR', True, True)
instr2 = RsInstrument.from_existing_session(instr1)

print(f'instr1: {instr1.idn_string}')
print(f'instr2: {instr2.idn_string}')

Closing the instr2 session does not close the instr1 session - instr1 is the 'session␣
→˓master'
instr2.close()
print(f'instr2: I am closed now')

print(f'instr1: I am still opened and working: {instr1.idn_string}')
instr1.close()
print(f'instr1: Only now I am closed.')

Note: The instr1 is the object holding the ‘master’ session. If you call the instr1.close(), the instr2 loses its
instrument session as well, and becomes pretty much useless.

20 Chapter 6. 4. Initiating instrument session

CHAPTER

SEVEN

5. BASIC I/O COMMUNICATION

Now we have opened the session, it’s time to do some work. RsInstrument provides two basic methods for communi-
cation:

• write() - writing a command without an answer e.g.: *RST
• query() - querying your instrument, for example with the *IDN? query

Here, you may ask a question: Where is the read() ? Short answer - you do not need it. Long answer - your instrument
never sends unsolicited responses. If you send a set-command, you use write(). For a query-command, you use
query(). So, you really do not need it. . .

Enough with the theory, let us look at an example. Basic write, and query:

"""
Basic string write_str / query_str
"""

from RsInstrument import *

instr = RsInstrument('TCPIP::192.168.56.101::INSTR', True, True)
instr.write_str('*RST')
response = instr.query_str('*IDN?')
print(response)

Close the session
instr.close()

This example is so-called “University-Professor-Example” - good to show a principle, but never used in praxis. The
previously mentioned commands are already a part of the driver’s API. Here is another example, achieving the same
goal:

"""
Basic string write_str / query_str
"""

from RsInstrument import *

instr = RsInstrument('TCPIP::192.168.56.101::INSTR', True, True)
instr.reset()
print(instr.idn_string)

Close the session
instr.close()

21

RsInstrument Python, Release 1.70.0

One additional feature we need to mention here: VISA timeout. To simplify, VISA timeout plays a role in each
query_xxx(), where the controller (your PC) has to prevent waiting forever for an answer from your instrument.
VISA timeout defines that maximum waiting time. You can set/read it with the visa_timeout property:

Timeout in milliseconds
instr.visa_timeout = 3000

After this time, RsInstrument raises an exception. Speaking of exceptions, an important feature of the RsInstrument is
Instrument Status Checking. Check out the next chapter that describes the error checking in details.

For completion, we mention other string-based write_xxx() and query_xxx() methods, all in one example. They
are convenient extensions providing type-safe float/boolean/integer setting/querying features:

"""
Basic string write_xxx / query_xxx
"""

from RsInstrument import *

instr = RsInstrument('TCPIP::192.168.56.101::INSTR', True, True)
instr.visa_timeout = 5000
instr.instrument_status_checking = True
instr.write_int('SWEEP:COUNT ', 10) # sending 'SWEEP:COUNT 10'
instr.write_bool('SOURCE:RF:OUTPUT:STATE ', True) # sending 'SOURCE:RF:OUTPUT:STATE ON'
instr.write_float('SOURCE:RF:FREQUENCY ', 1E9) # sending 'SOURCE:RF:FREQUENCY 1000000000'

sc = instr.query_int('SWEEP:COUNT?') # returning integer number sc=10
out = instr.query_bool('SOURCE:RF:OUTPUT:STATE?') # returning boolean out=True
freq = instr.query_float('SOURCE:RF:FREQUENCY?') # returning float number freq=1E9

Close the session
instr.close()

Lastly, a method providing basic synchronization: query_opc(). It sends *OPC? to your instrument. The instrument
waits with the answer until all the tasks it currently has in the execution queue are finished. This way your program waits
too, and it is synchronized with actions in the instrument. Remember to have the VISA timeout set to an appropriate
value to prevent the timeout exception. Here’s a snippet:

instr.visa_timeout = 3000
instr.write("INIT")
instr.query_opc()

The results are ready now to fetch
results = instr.query('FETCH:MEASUREMENT?')

You can define the VISA timeout directly in the query_opc, which is valid only for that call. Afterwards, the VISA
timeout is set to the previous value:

instr.write("INIT")
instr.query_opc(3000)

Tip: Wait, there’s more: you can send the *OPC? after each write_xxx() automatically:

22 Chapter 7. 5. Basic I/O communication

RsInstrument Python, Release 1.70.0

Default value after init is False
instr.opc_query_after_write = True

23

RsInstrument Python, Release 1.70.0

24 Chapter 7. 5. Basic I/O communication

CHAPTER

EIGHT

6. ERROR CHECKING

RsInstrument has a built-in mechanism that after each command/query checks the instrument’s status subsystem, and
raises an exception if it detects an error. For those who are already screaming: Speed Performance Penalty!!!, don’t
worry, you can disable it.

Instrument status checking is very useful since in case your command/query caused an error, you are immediately
informed about it. Status checking has in most cases no practical effect on the speed performance of your program.
However, if for example, you do many repetitions of short write/query sequences, it might make a difference to switch
it off:

Default value after init is True
instr.instrument_status_checking = False

To clear the instrument status subsystem of all errors, call this method:

instr.clear_status()

Instrument’s status system error queue is clear-on-read. It means, if you query its content, you clear it at the same time.
To query and clear list of all the current errors, use the following:

errors_list = instr.query_all_errors()

See the next chapter on how to react on write/query errors.

25

RsInstrument Python, Release 1.70.0

26 Chapter 8. 6. Error Checking

CHAPTER

NINE

7. EXCEPTION HANDLING

The base class for all the exceptions raised by the RsInstrument is RsInstrException. Inherited exception classes:

• ResourceError raised in the constructor by problems with initiating the instrument, for example wrong or
non-existing resource name

• StatusException raised if a command or a query generated error in the instrument’s error queue

• TimeoutException raised if a visa timeout or an opc timeout is reached

In this example we show usage of all of them:

"""
How to deal with RsInstrument exceptions
"""

from RsInstrument import *

RsInstrument.assert_minimum_version('1.70.0')
instr = None
Try-catch for initialization. If an error occurs, the ResourceError is raised
try:

instr = RsInstrument('TCPIP::10.112.1.179::HISLIP', True, True)
except ResourceError as e:

print(e.args[0])
print('Your instrument is probably OFF...')
Exit now, no point of continuing
exit(1)

try:
Dealing with commands that potentially generate instrument errors:
Switching the status checking OFF temporarily.
We use the InstrumentErrorSuppression context-manager that does it for us:
with instr.instr_err_suppressor() as supp:

instr.write('MY:MISSpelled:COMMand')
if supp.get_errors_occurred():

print("Errors occurred: ")
for err in supp.get_all_errors():

print(err)

Here for this query we use the reduced VISA timeout to prevent long waiting
with instr.instr_err_suppressor(visa_tout_ms=500) as supp:

idn = instr.query('*IDaN')
if supp.get_errors_occurred():

(continues on next page)

27

RsInstrument Python, Release 1.70.0

(continued from previous page)

print("Errors occurred: ")
for err in supp.get_all_errors():

print(err)

except StatusException as e:
Instrument status error
print(e.args[0])
print('Nothing to see here, moving on...')

except TimeoutException as e:
Timeout error
print(e.args[0])
print('That took a long time...')

except RsInstrException as e:
RsInstrException is a base class for all the RsInstrument exceptions
print(e.args[0])
print('Some other RsInstrument error...')

finally:
instr.close()

9.1 7.1 Error Context Managers

You have seen in the example above the usage of two error Context-managers:

• Instrument status error Context-manager

• VISA timeout Context-manager

Instrument error suppressor Context-manager has several other neat features:

• It can change the VISA timeout for the commands in the context.

• It can selectively suppress only certain instrument error codes, and for others it raises exceptions.

• In case any other exception is raised within the context, the context-manager sets all the changed values back to
the original state.

Let us look at two examples. The following one only suppresses execution error (code -200). Since the command is
misspelled, the error generated by the instrument has the code -113,’Undefined Header’, and therefore the exception is
raised anyway. This way you can only suppress certain errors. The context-manager object allows for checking if some
errors were suppressed, and you can also read them all out:

"""
Suppress instrument errors with certain code with the Suppress Context-manager.
"""

from RsInstrument import *

RsInstrument.assert_minimum_version('1.70.0')
instr = RsInstrument('TCPIP::10.112.1.179::HISLIP', True, True)

(continues on next page)

28 Chapter 9. 7. Exception Handling

RsInstrument Python, Release 1.70.0

(continued from previous page)

with instr.instr_err_suppressor(suppress_only_codes=-200) as supp:
This will raise the exception anyway, because the Undefined Header error has code -

→˓113
instr.write('MY:MISSpelled:COMMand')

if supp.get_errors_occurred():
print("Errors occurred: ")
for err in supp.get_all_errors():

print(err)

You can also change the VISA Timeout inside the context:

with instr.instr_err_suppressor(visa_tout_ms=500, suppress_only_codes=-300) as supp:
response = instr.query('*IDaN?')

Multiple error codes to suppress you enter as an integer list:

with instr.instr_err_suppressor(visa_tout_ms=3000, suppress_only_codes=[-200, -300]) as␣
→˓supp:

meas = instr.query('MEASurement:RESult?')

If you are fighting with TimeoutExceptions, you’d like to react on them with a workaround, and continue with your
code further, you have to do the following steps:

• adjust the VISA timeout to higher value to give the instrument more time, or to lower value to prevent long
waiting times.

• execute the command / query.

• in case the timeout error occurrs, you clear the error queue to delete any ‘Query Interrupted’ errors.

• change the VISA timeout back to the original value.

This all is what the VISA Timeout Suppressor Context-manager does:

"""
Suppress VISA Timeout exception for certain commands with the Suppress Context-manager.
"""

from RsInstrument import *

RsInstrument.assert_minimum_version('1.70.0')
instr = RsInstrument('TCPIP::10.99.2.12::HISLIP', True, True)

with instr.visa_tout_suppressor(visa_tout_ms=500) as supp:
instr.query('*IDaN?')

if supp.get_timeout_occurred():
print("Timeout occurred inside the context")

9.1. 7.1 Error Context Managers 29

RsInstrument Python, Release 1.70.0

30 Chapter 9. 7. Exception Handling

CHAPTER

TEN

8. OPC-SYNCHRONIZED I/O COMMUNICATION

Now we are getting to the cool stuff: OPC-synchronized communication. OPC stands for OPeration Completed. The
idea is: use one method (write or query), which sends the command, and polls the instrument’s status subsystem until it
indicates: “I’m finished”. The main advantage is, you can use this mechanism for commands that take several seconds,
or minutes to complete, and you are still able to interrupt the process if needed. You can also perform other operations
with the instrument in a parallel thread.

Now, you might say: “This sounds complicated, I’ll never use it”. That is where the RsInstrument comes in: all the
write/query methods we learned in the previous chapter have their _with_opc siblings. For example: write() has
write_with_opc(). You can use them just like the normal write/query with one difference: They all have an optional
parameter timeout, where you define the maximum time to wait. If you omit it, it uses a value from opc_timeout
property. Important difference between the meaning of visa_timeout and opc_timeout:

• visa_timeout is a VISA IO communication timeout. It does not play any role in the _with_opc() methods.
It only defines timeout for the standard query_xxx() methods. We recommend to keep it to maximum of 10000
ms.

• opc_timeout is a RsInstrument internal timeout, that serves as a default value to all the _with_opc() methods.
If you explicitly define it in the method API, it is valid only for that one method call.

That was too much theory. . . now an example:

"""
Write / Query with OPC
The SCPI commands syntax is for demonstration only
"""

from RsInstrument import *

instr = RsInstrument('TCPIP::192.168.56.101::INSTR', True, True)
instr.visa_timeout = 3000
opc_timeout default value is 10000 ms
instr.opc_timeout = 20000

Send Reset command and wait for it to finish
instr.write_str_with_opc('*RST')

Initiate the measurement and wait for it to finish, define the timeout 50 secs
Notice no changing of the VISA timeout
instr.write_str_with_opc('INIT', 50000)
The results are ready, simple fetch returns the results
Waiting here is not necessary
result1 = instr.query_str('FETCH:MEASUREMENT?')

(continues on next page)

31

RsInstrument Python, Release 1.70.0

(continued from previous page)

READ command starts the measurement, we use query_with_opc to wait for the measurement␣
→˓to finish
result2 = instr.query_str_with_opc('READ:MEASUREMENT?', 50000)

Close the session
instr.close()

32 Chapter 10. 8. OPC-synchronized I/O Communication

CHAPTER

ELEVEN

9. QUERYING ARRAYS

Often you need to query an array of numbers from your instrument, for example a spectrum analyzer trace or an
oscilloscope waveform. Many programmers stick to transferring such arrays in ASCII format, because of the simplicity.
Although simple, it is quite inefficient: one float 32-bit number can take up to 12 characters (bytes), compared to 4
bytes in a binary form. Well, with RsInstrument do not worry about the complexity: we have one method for binary or
ascii array transfer.

11.1 Querying Float Arrays

Let us look at the example below. The method doing all the magic is query_bin_or_ascii_float_list(). In the
‘waveform’ variable, we get back a list of float numbers:

"""
Querying ASCII float arrays
"""

from time import time
from RsInstrument import *

rto = RsInstrument('TCPIP::192.168.56.101::INSTR', True, True)
Initiate a single acquisition and wait for it to finish
rto.write_str_with_opc("SINGle", 20000)

Query array of floats in ASCII format
t = time()
waveform = rto.query_bin_or_ascii_float_list('FORM ASC;:CHAN1:DATA?')
print(f'Instrument returned {len(waveform)} points, query duration {time() - t:.3f} secs
→˓')

Close the RTO session
rto.close()

You might say: I would do this with a simple ‘query-string-and-split-on-commas’. . . and you are right. The magic
happens when we want the same waveform in binary form. One additional setting we need though - the binary data
from the instrument does not contain information about its encoding. Is it 4 bytes float, or 8 bytes float? Low Endian
or Big Endian? This, we specify with the property bin_float_numbers_format:

"""
Querying binary float arrays
"""

(continues on next page)

33

RsInstrument Python, Release 1.70.0

(continued from previous page)

from RsInstrument import *
from time import time

rto = RsInstrument('TCPIP::192.168.56.101::INSTR', True, True)
Initiate a single acquisition and wait for it to finish
rto.write_str_with_opc("SINGle", 20000)

Query array of floats in Binary format
t = time()
This tells the RsInstrument in which format to expect the binary float data
rto.bin_float_numbers_format = BinFloatFormat.Single_4bytes
If your instrument sends the data with the swapped endianness, use the following␣
→˓format:
rto.bin_float_numbers_format = BinFloatFormat.Single_4bytes_swapped
waveform = rto.query_bin_or_ascii_float_list('FORM REAL,32;:CHAN1:DATA?')
print(f'Instrument returned {len(waveform)} points, query duration {time() - t:.3f} secs
→˓')

Close the RTO session
rto.close()

Tip: To find out in which format your instrument sends the binary data, check out the format settings: FORM
REAL,32 means floats, 4 bytes per number. It might be tricky to find out whether to swap the endianness. We
recommend you simply try it out - there are only two options. If you see too many NaN values returned, you probably
chose the wrong one:

• BinFloatFormat.Single_4bytes means the instrument and the control PC use the same endianness

• BinFloatFormat.Single_4bytes_swapped means they use opposite endiannesses

The same is valid for double arrays: settings FORM REAL,64 corresponds to either BinFloatFormat.
Double_8bytes or BinFloatFormat.Double_8bytes_swapped

11.2 Querying Integer Arrays

For performance reasons, we split querying float and integer arrays into two separate methods. The following example
shows both ascii and binary array query. Here, the magic method is query_bin_or_ascii_int_list() returning
list of integers:

"""
Querying ASCII and binary integer arrays
"""

from RsInstrument import *
from time import time

rto = RsInstrument('TCPIP::192.168.56.101::INSTR', True, True)
Initiate a single acquisition and wait for it to finish
rto.write_str_with_opc("SINGle", 20000)

(continues on next page)

34 Chapter 11. 9. Querying Arrays

RsInstrument Python, Release 1.70.0

(continued from previous page)

Query array of integers in ASCII format
t = time()
waveform = rto.query_bin_or_ascii_int_list('FORM ASC;:CHAN1:DATA?')
print(f'Instrument returned {len(waveform)} points in ASCII format, query duration
→˓{time() - t:.3f} secs')

Query array of integers in Binary format
t = time()
This tells the RsInstrument in which format to expect the binary integer data
rto.bin_int_numbers_format = BinIntFormat.Integer32_4bytes
If your instrument sends the data with the swapped endianness, use the following␣
→˓format:
rto.bin_int_numbers_format = BinIntFormat.Integer32_4bytes_swapped
waveform = rto.query_bin_or_ascii_int_list('FORM INT,32;:CHAN1:DATA?')
print(f'Instrument returned {len(waveform)} points in binary format, query duration
→˓{time() - t:.3f} secs')

Close the rto session
rto.close()

11.2. Querying Integer Arrays 35

RsInstrument Python, Release 1.70.0

36 Chapter 11. 9. Querying Arrays

CHAPTER

TWELVE

10. QUERYING BINARY DATA

A common question from customers: How do I read binary data to a byte stream, or a file?

If you want to transfer files between PC and your instrument, check out the following chapter: 12_Transferring_Files.

12.1 Querying to bytes

Let us say you want to get raw (bytes) RTO waveform data. Call this method:

data = rto.query_bin_block('FORM REAL,32;:CHAN1:DATA?')

12.2 Querying to PC files

Modern instrument can acquire gigabytes of data, which is often more than your program can hold in memory. The
solution may be to save this data to a file. RsInstrument is smart enough to read big data in chunks, which it immediately
writes into a file stream. This way, at any given moment your program only holds one chunk of data in memory. You
can set the chunk size with the property data_chunk_size. The initial value is 100 000 bytes.

We are going to read the RTO waveform into a PC file c:\temp\rto_waveform_data.bin:

rto.data_chunk_size = 10000
rto.query_bin_block_to_file(

'FORM REAL,32;:CHAN1:DATA?',
r'c:\temp\rto_waveform_data.bin',
append=False)

37

RsInstrument Python, Release 1.70.0

38 Chapter 12. 10. Querying Binary Data

CHAPTER

THIRTEEN

11. WRITING BINARY DATA

13.1 Writing from bytes data

We take an example for a Signal generator waveform data file. First, we construct a wform_data as bytes, and then
send it with write_bin_block():

MyWaveform.wv is an instrument file name under which this data is stored
smw.write_bin_block("SOUR:BB:ARB:WAV:DATA 'MyWaveform.wv',", wform_data)

Note: Notice the write_bin_block() has two parameters:

• string parameter cmd for the SCPI command

• bytes parameter payload for the actual data to send

13.2 Writing from PC files

Similar to querying binary data to a file, you can write binary data from a file. The second parameter is the source PC
file path with content which you want to send:

smw.write_bin_block_from_file("SOUR:BB:ARB:WAV:DATA 'MyWaveform.wv',", r"c:\temp\wform_
→˓data.wv")

39

RsInstrument Python, Release 1.70.0

40 Chapter 13. 11. Writing Binary Data

CHAPTER

FOURTEEN

12. TRANSFERRING FILES

14.1 Instrument -> PC

You just did a perfect measurement, saved the results as a screenshot to the instrument’s storage drive. Now you want to
transfer it to your PC. With RsInstrument, no problem, just figure out where the screenshot was stored on the instrument.
In our case, it is var/user/instr_screenshot.png:

instr.read_file_from_instrument_to_pc(
r'/var/user/instr_screenshot.png',
r'c:\temp\pc_screenshot.png')

14.2 PC -> Instrument

Another common scenario: Your cool test program contains a setup file you want to transfer to your instrument: Here
is the RsInstrument one-liner split into 3 lines:

instr.send_file_from_pc_to_instrument(
'c:\MyCoolTestProgram\instr_setup.sav',
r'/var/appdata/instr_setup.sav')

Tip:
You want to delete a file on the instrument, but the instrument reports an error, because the file does not exist?
Or you want to write a file to the instrument, but get an error that the file already exists and can not be overwritten?
Not anymore, use the file detection methods:

Do you exist?
i_exist = instr.file_exist(r'/var/appdata/instr_setup.sav')

Give me your size or give me nothing...
your_size = instr.get_file_size(r'/var/appdata/instr_setup.sav')

41

RsInstrument Python, Release 1.70.0

42 Chapter 14. 12. Transferring Files

CHAPTER

FIFTEEN

13. TRANSFERRING BIG DATA WITH PROGRESS

We can agree that it can be annoying using an application that shows no progress for long-lasting operations. The same
is true for remote-control programs. Luckily, RsInstrument has this covered. And, this feature is quite universal - not
just for big files transfer, but for any data in both directions.

RsInstrument allows you to register a function (programmer’s fancy name is handler or callback), which is then
periodically invoked after transfer of one data chunk. You can define that chunk size, which gives you control over the
callback invoke frequency. You can even slow down the transfer speed, if you want to process the data as they arrive
(direction instrument -> PC).

To show this in praxis, we are going to use another University-Professor-Example: querying the *IDN? with chunk
size of 2 bytes and delay of 200ms between each chunk read:

"""
Event handlers by reading
"""

from RsInstrument import *
import time

def my_transfer_handler(args):
"""Function called each time a chunk of data is transferred"""
Total size is not always known at the beginning of the transfer
total_size = args.total_size if args.total_size is not None else "unknown"

print(f"Context: '{args.context}{'with opc' if args.opc_sync else ''}', "
f"chunk {args.chunk_ix}, "
f"transferred {args.transferred_size} bytes, "
f"total size {total_size}, "
f"direction {'reading' if args.reading else 'writing'}, "
f"data '{args.data}'")

if args.end_of_transfer:
print('End of Transfer')

time.sleep(0.2)

instr = RsInstrument('TCPIP::192.168.56.101::INSTR', True, True)

instr.events.on_read_handler = my_transfer_handler
Switch on the data to be included in the event arguments

(continues on next page)

43

RsInstrument Python, Release 1.70.0

(continued from previous page)

The event arguments args.data will be updated
instr.events.io_events_include_data = True
Set data chunk size to 2 bytes
instr.data_chunk_size = 2
instr.query_str('*IDN?')
Unregister the event handler
instr.events.on_read_handler = None

Close the session
instr.close()

If you start it, you might wonder (or maybe not): why is the args.total_size = None? The reason is, in this
particular case the RsInstrument does not know the size of the complete response up-front. However, if you use the
same mechanism for transfer of a known data size (for example, a file transfer), you get the information about the total
size too, and hence you can calculate the progress as:

progress [pct] = 100 * args.transferred_size / args.total_size

Snippet of transferring file from PC to instrument, the rest of the code is the same as in the previous example:

instr.events.on_write_handler = my_transfer_handler
instr.events.io_events_include_data = True
instr.data_chunk_size = 1000
instr.send_file_from_pc_to_instrument(

r'c:\MyCoolTestProgram\my_big_file.bin',
r'/var/user/my_big_file.bin')

Unregister the event handler
instr.events.on_write_handler = None

44 Chapter 15. 13. Transferring Big Data with Progress

CHAPTER

SIXTEEN

14. MULTITHREADING

You are at the party, many people talking over each other. Not every person can deal with such crosstalk, neither can
measurement instruments. For this reason, RsInstrument has a feature of scheduling the access to your instrument by
using so-called Locks. Locks make sure that there can be just one client at a time ‘talking’ to your instrument. Talking
in this context means completing one communication step - one command write or write/read or write/read/error check.

To describe how it works, and where it matters, we take three typical multithread scenarios:

16.1 One instrument session, accessed from multiple threads

You are all set - the lock is a part of your instrument session. Check out the following example - it will execute properly,
although the instrument gets 10 queries at the same time:

"""
Multiple threads are accessing one RsInstrument object
"""

import threading
from RsInstrument import *

def execute(session: RsInstrument) -> None:
"""Executed in a separate thread."""
session.query_str('*IDN?')

Make sure you have the RsInstrument version 1.50.0 and newer
RsInstrument.assert_minimum_version('1.50.0')
instr = RsInstrument('TCPIP::192.168.56.101::INSTR')
threads = []
for i in range(10):

t = threading.Thread(target=execute, args=(instr,))
t.start()
threads.append(t)

print('All threads started')

Wait for all threads to join this main thread
for t in threads:

t.join()
print('All threads ended')

(continues on next page)

45

RsInstrument Python, Release 1.70.0

(continued from previous page)

instr.close()

16.2 Shared instrument session, accessed from multiple threads

Same as in the previous case, you are all set. The session carries the lock with it. You have two objects, talking to the
same instrument from multiple threads. Since the instrument session is shared, the same lock applies to both objects
causing the exclusive access to the instrument.

Try the following example:

"""
Multiple threads are accessing two RsInstrument objects with shared session
"""

import threading
from RsInstrument import *

def execute(session: RsInstrument, session_ix, index) -> None:
"""Executed in a separate thread."""
print(f'{index} session {session_ix} query start...')
session.query_str('*IDN?')
print(f'{index} session {session_ix} query end')

Make sure you have the RsInstrument version 1.50.0 and newer
RsInstrument.assert_minimum_version('1.50.0')
instr1 = RsInstrument('TCPIP::192.168.56.101::INSTR')
instr2 = RsInstrument.from_existing_session(instr1)
instr1.visa_timeout = 200
instr2.visa_timeout = 200
To see the effect of crosstalk, uncomment this line
instr2.clear_lock()

threads = []
for i in range(10):

t = threading.Thread(target=execute, args=(instr1, 1, i,))
t.start()
threads.append(t)
t = threading.Thread(target=execute, args=(instr2, 2, i,))
t.start()
threads.append(t)

print('All threads started')

Wait for all threads to join this main thread
for t in threads:

t.join()
print('All threads ended')

(continues on next page)

46 Chapter 16. 14. Multithreading

RsInstrument Python, Release 1.70.0

(continued from previous page)

instr2.close()
instr1.close()

As you see, everything works fine. If you want to simulate some party crosstalk, uncomment the line instr2.
clear_lock(). This causes the instr2 session lock to break away from the instr1 session lock. Although the instr1
still tries to schedule its instrument access, the instr2 tries to do the same at the same time, which leads to all the fun
stuff happening.

16.3 Multiple instrument sessions accessed from multiple threads

Here, there are two possible scenarios depending on the instrument’s capabilities:

• You are lucky, because you instrument handles each remote session completely separately. An example of such
instrument is SMW200A. In this case, you have no need for session locking.

• Your instrument handles all sessions with one set of in/out buffers. You need to lock the session for the duration
of a talk. And you are lucky again, because the RsInstrument takes care of it for you. The text below describes
this scenario.

Run the following example:

"""
Multiple threads are accessing two RsInstrument objects with two separate sessions
"""

import threading
from RsInstrument import *

def execute(session: RsInstrument, session_ix, index) -> None:
"""Executed in a separate thread."""
print(f'{index} session {session_ix} query start...')
session.query_str('*IDN?')
print(f'{index} session {session_ix} query end')

Make sure you have the RsInstrument version 1.50.0 and newer
RsInstrument.assert_minimum_version('1.50.0')
instr1 = RsInstrument('TCPIP::192.168.56.101::INSTR')
instr2 = RsInstrument('TCPIP::192.168.56.101::INSTR')
instr1.visa_timeout = 200
instr2.visa_timeout = 200

Synchronise the sessions by sharing the same lock
instr2.assign_lock(instr1.get_lock()) # To see the effect of crosstalk, comment this␣
→˓line

threads = []
for i in range(10):

t = threading.Thread(target=execute, args=(instr1, 1, i,))
t.start()
threads.append(t)

(continues on next page)

16.3. Multiple instrument sessions accessed from multiple threads 47

RsInstrument Python, Release 1.70.0

(continued from previous page)

t = threading.Thread(target=execute, args=(instr2, 2, i,))
t.start()
threads.append(t)

print('All threads started')

Wait for all threads to join this main thread
for t in threads:

t.join()
print('All threads ended')

instr2.close()
instr1.close()

You have two completely independent sessions that want to talk to the same instrument at the same time. This will not
go well, unless they share the same session lock. The key command to achieve this is instr2.assign_lock(instr1.
get_lock()) Comment that line, and see how it goes. If despite commenting the line the example runs without issues,
you are lucky to have an instrument similar to the SMW200A.

48 Chapter 16. 14. Multithreading

CHAPTER

SEVENTEEN

15. LOGGING

Yes, the logging again. This one is tailored for instrument communication. You will appreciate such handy feature
when you troubleshoot your program, or just want to protocol the SCPI communication for your test reports.

What can you do with the logger?

• Write SCPI communication to a stream-like object, for example console or file, or both simultaneously

• Log only errors and skip problem-free parts; this way you avoid going through thousands lines of texts

• Investigate duration of certain operations to optimize your program’s performance

• Log custom messages from your program

The logged information can be sent to these targets (one or multiple):

• Console: this is the most straight-forward target, but it mixes up with other program outputs. . .

• Stream: the most universal one, see the examples below.

• UDP Port: if you wish to send it to another program, or a universal UDP listener. This option is used for example
by our Instrument Control Pycharm Plugin.

17.1 Logging to console

"""
Basic logging example to the console
"""

from RsInstrument import *

Make sure you have the RsInstrument version 1.50.0 and newer
RsInstrument.assert_minimum_version('1.50.0')
instr = RsInstrument('TCPIP::192.168.1.101::INSTR')

Switch ON logging to the console.
instr.logger.log_to_console = True
instr.logger.start()
instr.reset()

Close the session
instr.close()

Console output:

49

https://rsicpycharmplugin.readthedocs.io

RsInstrument Python, Release 1.70.0

10:29:10.819 TCPIP::192.168.1.101::INSTR 0.976 ms Write: *RST
10:29:10.819 TCPIP::192.168.1.101::INSTR 1884.985 ms Status check: OK
10:29:12.704 TCPIP::192.168.1.101::INSTR 0.983 ms Query OPC: 1
10:29:12.705 TCPIP::192.168.1.101::INSTR 2.892 ms Clear status: OK
10:29:12.708 TCPIP::192.168.1.101::INSTR 3.905 ms Status check: OK
10:29:12.712 TCPIP::192.168.1.101::INSTR 1.952 ms Close: Closing session

The columns of the log are aligned for better reading. Columns meaning:

(1) Start time of the operation.

(2) Device resource name. You can set an alias.

(3) Duration of the operation.

(4) Log entry.

Tip: You can customize the logging format with set_format_string(), and set the maximum log entry length with
these properties:

• abbreviated_max_len_ascii

• abbreviated_max_len_bin

• abbreviated_max_len_list

See the full logger help here.

Notice the SCPI communication starts from the line instr.reset(). If you want to log the initialization of the session
as well, you have to switch the logging ON already in the constructor:

instr = RsInstrument('TCPIP::192.168.56.101::hislip0', options='LoggingMode=On')

Note: instr.logger.start() and instr.logger.mode = LoggingMode=On have the same effect. However, in
the constructor’s options string, you can only use the LoggingMode=On format.

17.2 Logging to files

Parallel to the console logging, you can log to a general stream. Do not fear the programmer’s jargon’. . . under the
term stream you can just imagine a file. To be a little more technical, a stream in Python is any object that has two
methods: write() and flush(). This example opens a file and sets it as logging target:

"""
Example of logging to a file
"""

from RsInstrument import *

Make sure you have the RsInstrument version 1.50.0 and newer
RsInstrument.assert_minimum_version('1.50.0')
instr = RsInstrument('TCPIP::192.168.1.101::INSTR')

(continues on next page)

50 Chapter 17. 15. Logging

RsInstrument Python, Release 1.70.0

(continued from previous page)

We also want to log to the console.
instr.logger.log_to_console = True

Logging target is our file
file = open(r'c:\temp\my_file.txt', 'w')
instr.logger.set_logging_target(file)
instr.logger.start()

Instead of the 'TCPIP::192.168.1.101::INSTR', show 'MyDevice'
instr.logger.device_name = 'MyDevice'

Custom user entry
instr.logger.info_raw('----- This is my custom log entry. ---- ')

instr.reset()

Close the session
instr.close()

Close the log file
file.close()

17.3 Integration with Python’s logging module

Commonly used Python’s logging can be used with RsInstrument too:

"""
Example of logging to a python standard logger object.
"""

import logging

from RsInstrument import *

Make sure you have the RsInstrument version 1.50.0 and newer
RsInstrument.assert_minimum_version('1.50.0')

class LoggerStream:
"""Class to wrap the python's logging into a stream interface."""

@staticmethod
def write(log_entry: str) -> None:

"""Method called by the RsInstrument to add the log_entry.
Use it to do your custom operation, in our case calling python's logging function.

→˓"""
logging.info('RsInstrument: ' + log_entry.rstrip())

def flush(self) -> None:
"""Do the operations at the end. In our case, we do nothing."""

(continues on next page)

17.3. Integration with Python’s logging module 51

RsInstrument Python, Release 1.70.0

(continued from previous page)

pass

Setting of the SMW
smw = RsInstrument('TCPIP::10.99.2.10::hislip0', options='LoggingMode=On, LoggingName=SMW
→˓')

Create a logger stream object
target = LoggerStream()
logging.getLogger().setLevel(logging.INFO)

Adjust the log string to not show the start time
smw.logger.set_format_string('PAD_LEFT25(%DEVICE_NAME%) PAD_LEFT12(%DURATION%) %LOG_
→˓STRING_INFO%: %LOG_STRING%')
smw.logger.set_logging_target(target) # Log to my target

smw.logger.info_raw("> Custom log from SMW session")
smw.reset()

Close the sessions
smw.close()

17.4 Logging from multiple sessions

We hope you are a happy Rohde & Schwarz customer, and hence you use more than one of our instruments. In such
case, you probably want to log from all the instruments into a single target (file). Therefore, you open one log file for
writing (or appending) and the set is as the logging target for all your sessions:

"""
Example of logging to a file shared by multiple sessions
"""

from RsInstrument import *

Make sure you have the RsInstrument version 1.50.0 and newer
RsInstrument.assert_minimum_version('1.50.0')

Log file common for all the instruments,
previous content is discarded.
file = open(r'c:\temp\my_file.txt', 'w')

Setting of the SMW
smw = RsInstrument('TCPIP::192.168.1.101::INSTR', options='LoggingMode=On,␣
→˓LoggingName=SMW')
smw.logger.set_logging_target(file, console_log=True) # Log to file and the console

Setting of the SMCV
smcv = RsInstrument('TCPIP::192.168.1.102::INSTR', options='LoggingMode=On,␣
→˓LoggingName=SMCV')
smcv.logger.set_logging_target(file, console_log=True) # Log to file and the console

(continues on next page)

52 Chapter 17. 15. Logging

RsInstrument Python, Release 1.70.0

(continued from previous page)

smw.logger.info_raw("> Custom log from SMW session")
smw.reset()
smcv.logger.info_raw("> Custom log from SMCV session")
idn = smcv.query('*IDN?')

Close the sessions
smw.close()
smcv.close()

Close the log file
file.close()

Console output:

11:43:42.657 SMW 10.712 ms Session init: Device 'TCPIP::192.168.1.
→˓101::INSTR' IDN: Rohde&Schwarz,SMW200A,1412.0000K02/0,4.70.026 beta
11:43:42.668 SMW 2.928 ms Status check: OK
11:43:42.686 SMCV 1.952 ms Session init: Device 'TCPIP::192.168.1.
→˓102::INSTR' IDN: Rohde&Schwarz,SMCV100B,1432.7000K02/0,4.70.060.41 beta
11:43:42.688 SMCV 1.981 ms Status check: OK
> Custom log from SMW session
11:43:42.690 SMW 0.973 ms Write: *RST
11:43:42.690 SMW 1874.658 ms Status check: OK
11:43:44.565 SMW 0.976 ms Query OPC: 1
11:43:44.566 SMW 1.952 ms Clear status: OK
11:43:44.568 SMW 2.928 ms Status check: OK
> Custom log from SMCV session
11:43:44.571 SMCV 0.975 ms Query string: *IDN? Rohde&Schwarz,SMCV100B,
→˓1432.7000K02/0,4.70.060.41 beta
11:43:44.571 SMCV 1.951 ms Status check: OK
11:43:44.573 SMW 0.977 ms Close: Closing session
11:43:44.574 SMCV 0.976 ms Close: Closing session

Tip: To make the log more compact, you can skip all the lines with Status check: OK:

smw.logger.log_status_check_ok = False

17.5 Logging to UDP

For logging to a UDP port in addition to other log targets, use one of the lines:

smw.logger.log_to_udp = True
smw.logger.log_to_console_and_udp = True

You can select the UDP port to log to, the default is 49200:

smw.logger.udp_port = 49200

17.5. Logging to UDP 53

RsInstrument Python, Release 1.70.0

17.6 Logging from all instances

In Python everything is an object. Even class definition is an object that can have attributes. Starting with RsInstrument
version 1.40.0, we take advantage of that. We introduce the logging target as a class variable (class attribute). The
interesting effect of a class variable is, that it has immediate effect for all its instances. Let us rewrite the example
above for multiple sessions and use the class variable not only for the log target, but also a relative timestamp, which
gives us the log output starting from relative time 00:00:00:000. The created log file will have the same name as the
script, but with the extension .ptc (dedicated to those who still worship R&S Forum :-)

"""
Example of logging to a file shared by multiple sessions.
The log file and the reference timestamp is set to the RsInstrument class variable,
which makes it available to all the instances immediately.
Each instance must set the LogToGlobalTarget=True in the constructor,
or later io.logger.set_logging_target_global()
"""

from RsInstrument import *
import os
from pathlib import Path
from datetime import datetime

Make sure you have the RsInstrument version 1.50.0 and newer
RsInstrument.assert_minimum_version('1.50.0')

Log file common for all the RsInstrument instances, saved in the same folder as this␣
→˓script,
with the same name as this script, just with the suffix .ptc
The previous file content is discarded.
log_file = open(Path(os.path.realpath(__file__)).stem + ".ptc", 'w')
RsInstrument.set_global_logging_target(log_file)
Here you can set relative timestamp if you do now worry about the absolute times.
RsInstrument.set_global_logging_relative_timestamp(datetime.now())

Setting of the SMW: log to the global target and to the console
smw = RsInstrument(

resource_name='TCPIP::192.168.1.101::HISLIP',
options=f'LoggingMode=On, LoggingToConsole=True, LoggingName=SMW,␣

→˓LogToGlobalTarget=On')

Setting of the SMCV: log to the global target and to the console
smcv = RsInstrument(

resource_name='TCPIP::192.168.1.101::HISLIP',
options='LoggingMode=On, LoggingToConsole=True, LoggingName=SMCV,␣

→˓LogToGlobalTarget=On')

smw.logger.info_raw("> Custom log entry from SMW session")
smw.reset()
smcv.logger.info_raw("> Custom log entry from SMCV session")
idn = smcv.query('*IDN?')
Close the sessions
smw.close()
smcv.close()

(continues on next page)

54 Chapter 17. 15. Logging

RsInstrument Python, Release 1.70.0

(continued from previous page)

Show how much time each instrument needed for its operations.
smw.logger.info_raw("> SMW execution time: " + str(smw.get_total_execution_time()))
smcv.logger.info_raw("> SMCV execution time: " + str(smcv.get_total_execution_time()))

Close the log file
log_file.close()

Console output and the file content:

00:00:00.000 SMW 1107.736 ms Session init: Device 'TCPIP::192.168.1.
→˓101::hislip0' IDN: Rohde&Schwarz,SMW200A,1412.0000K02/0,4.70.026 beta
00:00:01.107 SMW 82.962 ms Status check: OK
00:00:01.190 SMCV 960.414 ms Session init: Device 'TCPIP::192.168.1.
→˓102::hislip0' IDN: Rohde&Schwarz,SMCV100B,1432.7000K02/0,5.00.122.24
00:00:02.151 SMCV 81.994 ms Status check: OK
> Custom log entry from SMW session
00:00:02.233 SMW 40.989 ms Write: *RST
00:00:02.233 SMW 1910.007 ms Status check: OK
00:00:04.143 SMW 82.013 ms Query OPC: 1
00:00:04.225 SMW 124.933 ms Clear status: OK
00:00:04.350 SMW 81.984 ms Status check: OK
> Custom log entry from SMCV session
00:00:04.432 SMCV 81.978 ms Query string: *IDN? Rohde&Schwarz,
→˓SMCV100B,1432.7000K02/0,5.00.122.24
00:00:04.432 SMCV 163.935 ms Status check: OK
00:00:04.595 SMW 144.479 ms Close: Closing session
00:00:04.740 SMCV 144.457 ms Close: Closing session
> SMW execution time: 0:00:03.451152
> SMCV execution time: 0:00:01.268806

For the completion, here are all the global time functions:

RsInstrument.set_global_logging_relative_timestamp(timestamp: datetime)
RsInstrument.get_global_logging_relative_timestamp() -> datetime
RsInstrument.set_global_logging_relative_timestamp_now()
RsInstrument.clear_global_logging_relative_timestamp()

and the session-specific time and statistic methods:

smw.logger.set_relative_timestamp(timestamp: datetime)
smw.logger.set_relative_timestamp_now()
smw.logger.get_relative_timestamp() -> datetime
smw.logger.clear_relative_timestamp()

smw.get_total_execution_time() -> timedelta
smw.get_total_time() -> timedelta
smw.get_total_time_startpoint() -> datetime
smw.reset_time_statistics()

17.6. Logging from all instances 55

RsInstrument Python, Release 1.70.0

17.7 Logging only errors

Another neat feature is errors-only logging. To make this mode useful for troubleshooting, you also want to see the
circumstances which lead to the errors. Each RsInstrument elementary operation, for example, write(), can generate
a group of log entries - let us call them Segment. In the logging mode Errors, a whole segment is logged only if at
least one entry of the segment is an error.

The script below demonstrates this feature. We deliberately misspelled a SCPI command *CLS, which leads to instru-
ment status error:

"""
Logging example to the console with only errors logged
"""

from RsInstrument import *

Make sure you have the RsInstrument version 1.50.0 and newer
RsInstrument.assert_minimum_version('1.50.0')
instr = RsInstrument('TCPIP::192.168.1.101::INSTR', options='LoggingMode=Errors')

Switch ON logging to the console.
instr.logger.log_to_console = True

Reset will not be logged, since no error occurred there
instr.reset()

Now a misspelled command.
instr.write('*CLaS')

A good command again, no logging here
idn = instr.query('*IDN?')

Close the session
instr.close()

Console output:

12:11:02.879 TCPIP::192.168.1.101::INSTR 0.976 ms Write string: *CLaS
12:11:02.879 TCPIP::192.168.1.101::INSTR 6.833 ms Status check: StatusException:

Instrument error detected: Undefined header;
→˓*CLaS

Notice the following:

• Although the operation Write string: *CLaS finished without an error, it is still logged, because it provides the
context for the actual error which occurred during the status checking right after.

• No other log entries are present, including the session initialization and close, because they ran error-free.

56 Chapter 17. 15. Logging

RsInstrument Python, Release 1.70.0

17.8 Setting the logging format

You can adjust the logging to your liking by setting the format string. The default format string:

PAD_LEFT12(%START_TIME%) PAD_LEFT25(%DEVICE_NAME%) PAD_LEFT12(%DURATION%)
%LOG_STRING_INFO%: %LOG_STRING%

Here’s an example for you minimalists, who only want to see the start, duration, and the SCPI command:

"""
Logging only the SCPI commands to the console.
"""

from RsInstrument import *

RsInstrument.assert_minimum_version('1.70.0')
instr = RsInstrument('TCPIP::10.102.52.53::hislip0')

Switch ON logging to the console.
instr.logger.log_to_console = True
instr.logger.set_format_string('PAD_LEFT12(%START_TIME%) PAD_LEFT12(%DURATION%) %SCPI_
→˓COMMAND%')
instr.logger.start()
instr.reset()

Close the session
instr.close()

Console output:

09:31:54.146 40.991 ms *RST
09:31:54.146 1939.319 ms *STB?
09:31:56.086 81.984 ms *OPC?
09:31:56.168 124.930 ms *CLS
09:31:56.293 82.015 ms *STB?
09:31:56.375 144.447 ms @CLOSE_SESSION

You can also initiate the logging and change its format in the constructor options string:

"""
Logging only the SCPI commands to the console.
"""

from RsInstrument import *

RsInstrument.assert_minimum_version('1.70.0')
instr = RsInstrument('TCPIP::10.102.52.53::hislip0',

options='LoggingMode=On, '
'LoggingToConsole=True, '
'LoggingFormat = "PAD_LEFT12(%START_TIME%) PAD_LEFT12(%DURATION%)

→˓%SCPI_COMMAND%"')
instr.reset()

Close the session
(continues on next page)

17.8. Setting the logging format 57

RsInstrument Python, Release 1.70.0

(continued from previous page)

instr.close()

The console output logs everything including the session intialization commands:

Console output:

09:36:47.983 1210.274 ms @INIT_SESSION
09:36:49.193 81.984 ms *STB?
09:36:49.275 40.988 ms *RST
09:36:49.275 1929.529 ms *STB?
09:36:51.205 82.990 ms *OPC?
09:36:51.288 124.899 ms *CLS
09:36:51.413 81.987 ms *STB?
09:36:51.495 144.480 ms @CLOSE_SESSION

58 Chapter 17. 15. Logging

CHAPTER

EIGHTEEN

RSINSTRUMENT PACKAGE

18.1 Modules

18.2 RsInstrument.RsInstrument

Root class for remote-controlling instrument with SCPI commands.

class RsInstrument(resource_name: str, id_query: bool = True, reset: bool = False, options: str = None,
direct_session: object = None)

Bases: object

Root class for remote-controlling instrument with SCPI commands.

Initializes new RsInstrument session.

Parameters
• resource_name – VISA resource name, e.g. ‘TCPIP::192.168.2.1::INSTR’

• id_query – if True, the instrument’s model name is verified against the models supported
by the driver and eventually throws an exception

• reset – Resets the instrument (sends *RST) command and clears its status syb-system

• direct_session – Another driver object or pyVisa object to reuse the session instead of
opening a new session

• options – string tokens alternating the driver settings

Parameter options tokens examples:
• Simulate=True - starts the session in simulation mode. Default: False

• SelectVisa=socketio - uses no VISA implementation for socket connections - you do not need any
VISA-C installation

• SelectVisa=rs - forces usage of RohdeSchwarz Visa

• SelectVisa=ni - forces usage of National Instruments Visa

• Profile = HM8123 - setting profile fitting the specific non-standard instruments. Available values:
HM8123, CMQ, ATS, Minimal. Default: none

• OpenTimeout=5000 - sets timeout used at the session opening. This timeout is only used in waiting
for a locked session to be freed. Default: 2000ms

• ExclusiveLock=True - opens the session with exclusive lock on the VISA level. Default: False

59

RsInstrument Python, Release 1.70.0

• QueryInstrumentStatus = False - same as driver.utilities.
instrument_status_checking = False. Default: True

• WriteDelay = 20, ReadDelay = 5 - introduces delay of 20ms before each write and 5ms before
each read. Default: 0ms for both

• TerminationCharacter = "\r" - sets the termination character for reading. Default: \n (LineFeed
or LF)

• AssureWriteWithTermChar = True - makes sure each command/query is terminated with termi-
nation character. Default: Interface dependent

• AddTermCharToWriteBinBlock = True - adds one additional LF to the end of the binary data
(some instruments require that). Default: False

• DataChunkSize = 10E3 - maximum size of one write/read segment. If transferred data is bigger, it
is split to more segments. Default: 1E7 bytes

• OpcTimeout = 10000 - same as driver.utilities.opc_timeout = 10000. Default: 30000ms

• VisaTimeout = 5000 - same as driver.utilities.visa_timeout = 5000. Default: 10000ms

• ViClearExeMode = Disabled - viClear() execution mode. Default: execute_on_all

• OpcQueryAfterWrite = True - same as driver.utilities.opc_query_after_write = True. Default:
False

• OpcWaitMode = OpcQuery - mode for all the opc-synchronised write/reads. Other modes:
StbPolling, StbPollingSlow, StbPollingSuperSlow. Default: StbPolling

• StbInErrorCheck = False - if true, the driver checks errors with *STB? If false, it uses
SYST:ERR?. Default: True

• SkipStatusSystemSettings = False - some instruments do not support full status system com-
mands. In such case, set this value to True. Default: False

• SkipClearStatus = True - set to True for instruments that do not support *CLS command. Default:
False

• DisableOpcQuery = True - set to True for instruments that do not support *OPC? query. Default:
False

• EachCmdAsQuery = True, set to True, for instruments that always return answer. Default: false

• CmdIdn = ID? - defines which SCPI command to use for identification query. Use ‘<none>’ string
to skip identification query at the init. Default: *IDN?

• CmdReset = RT - defines which SCPI command to use for reset. Default: *RST

• VxiCapable = false - you can force a session to a VXI-incapable. Default: <interface-dependent>

• Encoding = utf-8 - setting of encoding for strings into bytes and vice-versa. Default: charmap

• OpcSyncQueryMechanism = AlsoCheckMav - setting of mechanism for OPC-synchronised queries.
Default: OnlyCheckMavErrQueue

• FirstCmds = *CLS - first command(s) to sent after init. Separated more commands/queries with ‘;;’.
Default: ````

• EachCmdPrefix = lf - this prefix is added to each command sent to the instrument. Default: ````
• LoggingMode = On - sets the logging status right from the start. Possible values: On | Off | Error.

Default: Off

• LoggingName = 'MyDevice' - sets the name to represent the session in the log entries. Default:
<resource_name>

60 Chapter 18. RsInstrument package

RsInstrument Python, Release 1.70.0

• LoggingFormat = 'PAD_LEFT12(%START_TIME%) PAD_LEFT25(%DEVICE_NAME%)
PAD_LEFT12(%DURATION%) %SCPI_COMMAND%' - sets the format of the log entries. Default:
PAD_LEFT12(%START_TIME%) PAD_LEFT25(%DEVICE_NAME%) PAD_LEFT12(%DURATION%)
%LOG_STRING_INFO%: %LOG_STRING%

• LogToGlobalTarget = True - sets the logging target to the class-property previously set with RsIn-
strument.set_global_logging_target() Default: False

• LoggingToConsole = True - immediately starts logging to the console. Default: False

• LoggingToUdp = True - immediately starts logging to the UDP port. Default: False

• LoggingUdpPort = 49200 - UDP port to log to. Default: 49200

static assert_minimum_version(min_version: str)→ None
Asserts that the driver version fulfills the minimum required version you have entered. This way you make
sure your installed driver is of the entered version or newer.

assign_lock(lock: RLock)→ None
Assigns the provided thread lock.

property bin_float_numbers_format: BinFloatFormat

Sets / returns format of float numbers when transferred as binary data

property bin_int_numbers_format: BinIntFormat

Sets / returns format of integer numbers when transferred as binary data

classmethod clear_global_logging_relative_timestamp()→ None
Clears the global relative timestamp. After this, all the instances using the global relative timestamp con-
tinue logging with the absolute timestamps.

clear_lock()→ None
Clears the existing thread lock, making the current session thread-independent from others that might share
the current thread lock.

clear_status()→ None
Clears instrument’s status system, the session’s I/O buffers and the instrument’s error queue

close()→ None
Closes the active RsInstrument session

property data_chunk_size: int

Returns max chunk size of one data block.

property driver_version: str

Returns the instrument driver version

property encoding: str

Returns string<=>bytes encoding of the session.

property events: Events

Interface for event handlers, see here

file_exists(instr_file: str)→ bool
Returns true, if the instrument file exist.

classmethod from_existing_session(session: object, options: str = None)→ RsInstrument
Creates a new RsInstrument object with the entered ‘session’ reused. :param session: can be another driver
or a direct pyvisa session :param options: string tokens alternating the driver settings

18.2. RsInstrument.RsInstrument 61

RsInstrument Python, Release 1.70.0

property full_instrument_model_name: str

Returns the current instrument’s full name e.g. ‘FSW26’

get_file_size(instr_file: str)→ int
Return size of the instrument file, or None if the file does not exist.

classmethod get_global_logging_relative_timestamp()→ datetime
Returns global common relative timestamp for log entries.

classmethod get_global_logging_target()

Returns global common target stream.

get_last_sent_cmd()→ str
Returns the last commands sent to the instrument. Only works in simulation mode.

get_lock()→ RLock
Returns the thread lock for the current session.

By default:

• If you create a new RsInstrument instance with new VISA session, the session gets a new thread lock.
You can assign it to another RsInstrument sessions in order to share one physical instrument with a
multi-thread access.

• If you create a new RsInstrument from an existing session, the thread lock is shared automatically
making both instances multi-thread safe.

You can always assign new thread lock by calling driver.utilities.assign_lock()

get_session_handle()

Returns the underlying pyvisa session

get_total_execution_time()→ timedelta
Returns total time spent by the library on communicating with the instrument. This time is always shorter
than get_total_time(), since it does not include gaps between the communication. You can reset this counter
with reset_time_statistics().

get_total_time()→ timedelta
Returns total time spent by the library on communicating with the instrument. This time is always shorter
than get_total_time(), since it does not include gaps between the communication. You can reset this counter
with reset_time_statistics().

get_total_time_startpoint()→ datetime
Returns time from which the execution started. This is the value that the get_total_time() calculates as its
reference. Calling the reset_time_statistics() sets this time to now.

go_to_local()→ None
Puts the instrument into local state.

go_to_remote()→ None
Puts the instrument into remote state.

property idn_string: str

Returns instrument’s identification string - the response on the SCPI command *IDN?

instr_err_suppressor(visa_tout_ms: int = 0, suppress_only_codes: int = None)→ InstrErrorSuppressor
Returns Context Manager that suppresses the instrument errors. Other exceptions types are still raised. On
entering the context, this class clears all the instrument status errors. :param visa_tout_ms: VISA Timeout
in milliseconds, that is set for this context. Afterward, it is changed back. Default value: do-not-change.

62 Chapter 18. RsInstrument package

RsInstrument Python, Release 1.70.0

:param suppress_only_codes: You can enter a code or list of codes for errors to be suppressed. Other errors
will be reported. Example: If you enter -113 here, only the ‘Undefined Header’ error will be suppressed.
Default value: suppress-all-errors.

property instrument_firmware_version: str

Returns instrument’s firmware version

property instrument_model_name: str

Returns the current instrument’s family name e.g. ‘FSW’

property instrument_options: List[str]

Returns all the instrument options. The options are sorted in the ascending order starting with K-options
and continuing with B-options

property instrument_serial_number: str

Returns instrument’s serial_number

property instrument_status_checking: bool

Sets / returns Instrument Status Checking. When True (default is True), all the driver methods and proper-
ties are sending “SYSTem:ERRor?” at the end to immediately react on error that might have occurred. We
recommend keeping the state checking ON all the time. Switch it OFF only in rare cases when you require
maximum speed. The default state after initializing the session is ON.

is_connection_active()→ bool
Returns true, if the VISA connection is active and the communication with the instrument still works.

static list_resources(expression: str = '?*::INSTR', visa_select: str = None)→ List[str]
Finds all the resources defined by the expression.

• ‘?*’ - matches all the available instruments

• ‘USB::?*’ - matches all the USB instruments

• ‘TCPIP::192?*’ - matches all the LAN instruments with the IP address starting with 192

Parameters
• expression – see the examples in the function

• visa_select – optional parameter selecting a specific VISA. Examples: ‘@ivi’, ‘@rs’

lock_resource(timeout: int, requested_key: str = None)→ bytes
Locks the instrument to prevent it from communicating with other clients.

property logger: ScpiLogger

Scpi Logger interface, see here

property manufacturer: str

Returns manufacturer of the instrument

property opc_query_after_write: bool

Sets / returns Instrument *OPC? query sending after each command write. When True, (default is False)
the driver sends *OPC? every time a write command is performed. Use this if you want to make sure your
sequence is performed command-after-command.

property opc_sync_query_mechanism: OpcSyncQueryMechanism

Returns the current setting of the OPC-Sync query mechanism.

18.2. RsInstrument.RsInstrument 63

mailto:'@ivi
mailto:'@rs

RsInstrument Python, Release 1.70.0

property opc_timeout: int

Sets / returns timeout in milliseconds for all the operations that use OPC synchronization.

process_all_commands()→ None
SCPI command: *WAI Stops further commands processing until all commands sent before *WAI have
been executed.

query(query: str)→ str
Sends the string query to the instrument and returns the response as string. The response is trimmed of any
trailing LF characters and has no length limit. This method is an alias to the query_str() method.

query_all_errors()→ List[str]
Queries and clears all the errors from the instrument’s error queue. The method returns list of strings
as error messages. If no error is detected, the return value is None. The process is: querying ‘SYS-
Tem:ERRor?’ in a loop until the error queue is empty. If you want to include the error codes, call the
query_all_errors_with_codes()

query_all_errors_with_codes()→ List[Tuple[int, str]]
Queries and clears all the errors from the instrument’s error queue. The method returns list of tuples
(code: int, message: str). If no error is detected, the return value is None. The process is: querying
‘SYSTem:ERRor?’ in a loop until the error queue is empty.

query_bin_block(query: str)→ bytes
Queries binary data block to bytes. Throws an exception if the returned data was not a binary data. Returns
data:bytes

query_bin_block_to_file(query: str, file_path: str, append: bool = False)→ None
Queries binary data block to the provided file. If append is False, any existing file content is discarded.
If append is True, the new content is added to the end of the existing file, or if the file does not exit, it is
created. Throws an exception if the returned data was not a binary data. Example for transferring a file
from Instrument -> PC: query = f”MMEM:DATA? ‘{INSTR_FILE_PATH}’”.

Alternatively, use the dedicated methods for this purpose:

• send_file_from_pc_to_instrument()

• read_file_from_instrument_to_pc()

query_bin_block_to_file_with_opc(query: str, file_path: str, append: bool = False, timeout: int =
None)→ None

Sends a OPC-synced query and writes the returned data to the provided file. If append is False, any existing
file content is discarded. If append is True, the new content is added to the end of the existing file, or if the
file does not exit, it is created. Throws an exception if the returned data was not a binary data.

query_bin_block_with_opc(query: str, timeout: int = None)→ bytes
Sends a OPC-synced query and returns binary data block to bytes. If you do not provide timeout, the
method uses current opc_timeout.

query_bin_or_ascii_float_list(query: str)→ List[float]
Queries a list of floating-point numbers that can be returned as ASCII or binary format.

• For ASCII format, the list numbers are decoded as comma-separated values.

• For Binary Format, the numbers are decoded based on the property BinFloatFormat, usually float
32-bit (FORM REAL,32).

query_bin_or_ascii_float_list_with_opc(query: str, timeout: int = None)→ List[float]
Sends a OPC-synced query and reads a list of floating-point numbers that can be returned as ASCII or
binary format.

64 Chapter 18. RsInstrument package

data:bytes

RsInstrument Python, Release 1.70.0

• For ASCII format, the list numbers are decoded as comma-separated values.

• For Binary Format, the numbers are decoded based on the property BinFloatFormat, usually float
32-bit (FORM REAL,32).

If you do not provide timeout, the method uses current opc_timeout.

query_bin_or_ascii_int_list(query: str)→ List[int]
Queries a list of floating-point numbers that can be returned as ASCII or binary format.

• For ASCII format, the list numbers are decoded as comma-separated values.

• For Binary Format, the numbers are decoded based on the property BinFloatFormat, usually float
32-bit (FORM REAL,32).

query_bin_or_ascii_int_list_with_opc(query: str, timeout: int = None)→ List[int]
Sends a OPC-synced query and reads a list of floating-point numbers that can be returned as ASCII or
binary format.

• For ASCII format, the list numbers are decoded as comma-separated values.

• For Binary Format, the numbers are decoded based on the property BinFloatFormat, usually float
32-bit (FORM REAL,32).

If you do not provide timeout, the method uses current opc_timeout.

query_bool(query: str)→ bool
Sends the query to the instrument and returns the response as boolean.

query_bool_list(query: str)→ List[bool]
Sends the string query to the instrument and returns the response as List of booleans, where the delimiter
is comma (‘,’). Blank or empty response is returned as an empty list.

query_bool_list_with_opc(query: str, timeout: int = None)→ List[bool]
Sends a OPC-synced query and reads response from the instrument as csv-list of booleans. If you do not
provide timeout, the method uses current opc_timeout. Blank or empty response is returned as an empty
list.

query_bool_with_opc(query: str, timeout: int = None)→ bool
Sends the opc-synced query to the instrument and returns the response as boolean. If you do not provide
timeout, the method uses current opc_timeout.

query_float(query: str)→ float
Sends the query to the instrument and returns the response as float.

query_float_with_opc(query: str, timeout: int = None)→ float
Sends the opc-synced query to the instrument and returns the response as float. If you do not provide
timeout, the method uses current opc_timeout.

query_int(query: str)→ int
Sends the query to the instrument and returns the response as integer.

query_int_with_opc(query: str, timeout: int = None)→ int
Sends the opc-synced query to the instrument and returns the response as integer. If you do not provide
timeout, the method uses current opc_timeout.

query_opc(timeout: int = 0)→ int
SCPI command: *OPC? Queries the instrument’s OPC bit and hence it waits until the instrument reports
operation complete. If you define timeout > 0, the VISA timeout is set to that value just for this method
call.

18.2. RsInstrument.RsInstrument 65

RsInstrument Python, Release 1.70.0

query_str(query: str)→ str
Sends the string query to the instrument and returns the response as string. The response is trimmed of any
trailing LF characters and has no length limit. This method is an alias to the query() method.

query_str_list(query: str, remove_blank_response: bool = False)→ List[str]
Sends the string query to the instrument and returns the response as List of strings, where the delimiter is
comma (‘,’). Each element of the list is trimmed for leading and trailing quotes.

Meaning of the ‘remove_blank_response’:
• False(default): whitespaces-only response is returned as a list with one empty element [‘’].

• True: whitespaces-only response is returned as an empty list [].

query_str_list_with_opc(query: str, timeout: int = None, remove_blank_response: bool = False)→
List[str]

Sends a OPC-synced query and reads response from the instrument as csv-list.
If you do not provide timeout, the method uses current opc_timeout.

Meaning of the ‘remove_blank_response’:
• False(default): whitespaces-only response is returned as a list with one empty element [‘’].

• True: whitespaces-only response is returned as an empty list [].

query_str_stripped(query: str)→ str
Sends the string query to the instrument and returns the response as string stripped of the trailing LF and
leading/trailing single/double quotes. The stripping of the leading/trailing quotes is blocked, if the string
contains the quotes in the middle. This method is an alias to the query_stripped() method.

query_str_with_opc(query: str, timeout: int = None)→ str
Sends the opc-synced query to the instrument and returns the response as string. The response is trimmed
of any trailing LF characters and has no length limit. If you do not provide timeout, the method uses current
opc_timeout.

query_stripped(query: str)→ str
Sends the string query to the instrument and returns the response as string stripped of the trailing LF and
leading/trailing single/double quotes. The stripping of the leading/trailing quotes is blocked, if the string
contains the quotes in the middle.

query_with_opc(query: str, timeout: int = None)→ str
This method is an alias to the write_str_with_opc(). Sends the opc-synced query to the instrument and
returns the response as string. The response is trimmed of any trailing LF characters and has no length
limit. If you do not provide timeout, the method uses current opc_timeout.

read_file_from_instrument_to_pc(source_instr_file: str, target_pc_file: str, append_to_pc_file: bool =
False)→ None

SCPI Command: MMEM:DATA?

Reads file from instrument to the PC.

Set the append_to_pc_file to True if you want to append the read content to the end of the existing PC
file.

reconnect(force_close: bool = False)→ bool
If the connection is not active, the method tries to reconnect to the device. If the connection is active, and
force_close is False, the method does nothing. If the connection is active, and force_close is True, the
method closes, and opens the session again. Returns True, if the reconnection has been performed.

66 Chapter 18. RsInstrument package

RsInstrument Python, Release 1.70.0

reset(timeout: int = 0)→ None
SCPI command: *RST Sends *RST command + calls the clear_status(). If you define timeout > 0, the
VISA timeout is set to that value just for this method call.

reset_time_statistics()→ None
Resets all execution and total time counters. Affects the results of get_total_time(),
get_total_execution_time() and get_total_time_startpoint()

property resource_name: str

Returns the resource name used in the constructor.

self_test(timeout: int = None)→ Tuple[int, str]
SCPI command: *TST? Performs instrument’s self-test. Returns tuple (code:int, message: str). Code 0
means the self-test passed. You can define the custom timeout in milliseconds. If you do not define it, the
method uses default self-test timeout (usually 60 secs).

send_file_from_pc_to_instrument(source_pc_file: str, target_instr_file: str)→ None
SCPI Command: MMEM:DATA

Sends file from PC to the instrument.

classmethod set_global_logging_relative_timestamp(timestamp: datetime)→ None
Sets global common relative timestamp for log entries. To use it, call the following:
io.logger.set_relative_timestamp_global()

classmethod set_global_logging_relative_timestamp_now()→ None
Sets global common relative timestamp for log entries to this moment. To use it, call the following:
io.logger.set_relative_timestamp_global().

classmethod set_global_logging_target(target)→ None
Sets global common target stream that each instance can use. To use it, call the following:
io.logger.set_logging_target_global(). If an instance uses global logging target, it automatically uses the
global relative timestamp (if set). You can set the target to None to invalidate it.

property supported_models: List[str]

Returns a list of the instrument models supported by this instrument driver

unlock_resource()→ None
Unlocks the instrument to other clients.

property visa_manufacturer: str

Returns the manufacturer of the current VISA session.

property visa_timeout: int

Sets / returns visa IO timeout in milliseconds.

visa_tout_suppressor(visa_tout_ms: int = 0)→ VisaTimeoutSuppressor
Returns Context Manager that suppresses the VISA timeout error. Careful!!!: Only the very first VISA
Timeout exception is suppressed, and afterward the context ends. Therefore, use only one command per
context manager, if you do not want to skip the following ones. :param visa_tout_ms: VISA Timeout in
milliseconds, that is set for this context. Afterward, it is changed back. Default value: do-not-change.

write(cmd: str)→ None
Writes the command to the instrument as string. This method is an alias to the write_str() method.

write_bin_block(cmd: str, payload: bytes)→ None
Writes all the payload as binary data block to the instrument. The binary data header is added at the
beginning of the transmission automatically, do not include it in the payload!!!

18.2. RsInstrument.RsInstrument 67

RsInstrument Python, Release 1.70.0

write_bin_block_from_file(cmd: str, file_path: str)→ None
Writes data from the file as binary data block to the instrument using the provided command. Example for
transferring a file from PC -> Instrument: cmd = f”MMEM:DATA ‘{INSTR_FILE_PATH}’,”.

Alternatively, use the dedicated methods for this purpose:

• send_file_from_pc_to_instrument()

• read_file_from_instrument_to_pc()

write_bool(cmd: str, param: bool)→ None
Writes the command to the instrument followed by the boolean parameter: e.g.: cmd = ‘OUTPUT’ param
= ‘True’, result command = ‘OUTPUT ON’

write_bool_with_opc(cmd: str, param: bool, timeout: int = None)→ None
Writes the command with OPC to the instrument followed by the boolean parameter: e.g.: cmd = ‘OUT-
PUT’ param = ‘True’, result command = ‘OUTPUT ON’ If you do not provide timeout, the method uses
current opc_timeout.

write_float(cmd: str, param: float)→ None
Writes the command to the instrument followed by the boolean parameter: e.g.: cmd = ‘CENTER:FREQ’
param = ‘10E6’, result command = ‘CENTER:FREQ 10E6’

write_float_with_opc(cmd: str, param: float, timeout: int = None)→ None
Writes the command with OPC to the instrument followed by the boolean parameter: e.g.: cmd = ‘CEN-
TER:FREQ’ param = ‘10E6’, result command = ‘CENTER:FREQ 10E6’ If you do not provide timeout,
the method uses current opc_timeout.

write_int(cmd: str, param: int)→ None
Writes the command to the instrument followed by the integer parameter: e.g.: cmd = ‘SELECT:INPUT’
param = ‘2’, result command = ‘SELECT:INPUT 2’

write_int_with_opc(cmd: str, param: int, timeout: int = None)→ None
Writes the command with OPC to the instrument followed by the integer parameter: e.g.: cmd = ‘SE-
LECT:INPUT’ param = ‘2’, result command = ‘SELECT:INPUT 2’ If you do not provide timeout, the
method uses current opc_timeout.

write_str(cmd: str)→ None
Writes the command to the instrument as string. This method is an alias to write() method.

write_str_with_opc(cmd: str, timeout: int = None)→ None
Writes the opc-synced command to the instrument. If you do not provide timeout, the method uses current
opc_timeout.

write_with_opc(cmd: str, timeout: int = None)→ None
This method is an alias to the write_str_with_opc(). Writes the opc-synced command to the instrument. If
you do not provide timeout, the method uses current opc_timeout.

68 Chapter 18. RsInstrument package

RsInstrument Python, Release 1.70.0

18.3 Module contents

VISA communication interface for SCPI-based instrument remote control. :version: 1.70.0 :copyright: 2024 by Rohde
& Schwarz GMBH & Co. KG :license: MIT, see LICENSE for more details.

18.3. Module contents 69

RsInstrument Python, Release 1.70.0

70 Chapter 18. RsInstrument package

CHAPTER

NINETEEN

RSINSTRUMENT.LOGGER

Check the usage in the Getting Started chapter Logging.

class ScpiLogger

Base class for SCPI logging

mode

Sets the logging ON or OFF. Additionally, you can set the logging ON only for errors. Possible values:

• LoggingMode.Off - logging is switched OFF

• LoggingMode.On - logging is switched ON

• LoggingMode.Errors - logging is switched ON, but only for error entries

• LoggingMode.Default - sets the logging to default - the value you have set with logger.default_mode

stop()→ None
Stops the logging. This is the same as: mode = LoggingMode.Off

start()→ None
Starts the logging with the last defined LoggingMode. Default is LoggingMode.On

default_mode

Sets / returns the default logging mode. You can recall the default mode by calling the logger.mode =
LoggingMode.Default.

Data Type
LoggingMode

device_name: str

Use this property to change the resource name in the log from the default Resource Name (e.g.
TCPIP::192.168.2.101::INSTR) to another name e.g. ‘MySigGen1’.

set_logging_target(target, console_log: bool = None, udp_log: bool = None)→ None
Sets logging target - the target must implement write() and flush(). You can optionally set the console and
UDP logging ON or OFF. This method switches the logging target global OFF.

get_logging_target()

Based on the global_mode, it returns the logging target: either the local or the global one.

set_logging_target_global(console_log: bool = None, udp_log: bool = None)→ None
Sets logging target to global. The global target must be defined. You can optionally set the console and
UDP logging ON or OFF.

log_to_console

Returns logging to console status.

71

RsInstrument Python, Release 1.70.0

log_to_udp

Returns logging to UDP status.

log_to_console_and_udp

Returns true, if both logging to UDP and console in are True.

info_raw(log_entry: str, add_new_line: bool = True)→ None
Method for logging the raw string without any formatting.

info(start_time: datetime, end_time: datetime, log_string_info: str, log_string: str, cmd: str)→ None
Method for logging one info entry. For binary log_string, use the info_bin()

error(start_time: datetime, end_time: datetime, log_string_info: str, log_string: str, cmd: str)→ None
Method for logging one error entry.

set_relative_timestamp(timestamp: datetime)→ None
If set, the further timestamps will be relative to the entered time.

set_relative_timestamp_now()→ None
Sets the relative timestamp to the current time.

get_relative_timestamp()→ datetime
Based on the global_mode, it returns the relative timestamp: either the local or the global one.

clear_relative_timestamp()→ None
Clears the reference time, and the further logging continues with absolute times.

flush()→ None
Flush all the entries.

log_status_check_ok

Sets / returns the current status of status checking OK. If True (default), the log contains logging of the
status checking ‘Status check: OK’. If False, the ‘Status check: OK’ is skipped - the log is more compact.
Errors will still be logged.

clear_cached_entries()→ None
Clears potential cached log entries. Cached log entries are generated when the Logging is ON, but no target
has been defined yet.

set_format_string(value: str, line_divider: str = '\n')→ None
Sets new format string and line divider. If you just want to set the line divider, set the
format string value=None The original format string is: PAD_LEFT12(%START_TIME%)
PAD_LEFT25(%DEVICE_NAME%) PAD_LEFT12(%DURATION%) %LOG_STRING_INFO%:
%LOG_STRING%

Additional variables to use: %SCPI_COMMAND%.

restore_format_string()→ None
Restores the original format string and the line divider to LF

abbreviated_max_len_ascii: int

Defines the maximum length of one ASCII log entry. Default value is 200 characters.

abbreviated_max_len_bin: int

Defines the maximum length of one Binary log entry. Default value is 2048 bytes.

abbreviated_max_len_list: int

Defines the maximum length of one list entry. Default value is 100 elements.

72 Chapter 19. RsInstrument.logger

RsInstrument Python, Release 1.70.0

bin_line_block_size: int

Defines number of bytes to display in one line. Default value is 16 bytes.

udp_port

Returns udp logging port.

target_auto_flushing

Returns status of the auto-flushing for the logging target.

73

RsInstrument Python, Release 1.70.0

74 Chapter 19. RsInstrument.logger

CHAPTER

TWENTY

RSINSTRUMENT.EVENTS

class Events

Common Events class. Event-related methods and properties. Here you can set all the event handlers.

property before_query_handler: Callable

Returns the handler of before_query events.

Returns
current before_query_handler

property before_write_handler: Callable

Returns the handler of before_write events.

Returns
current before_write_handler

property io_events_include_data: bool

Returns the current state of the io_events_include_data See the setter for more details.

property on_read_handler: Callable

Returns the handler of on_read events.

Returns
current on_read_handler

property on_write_handler: Callable

Returns the handler of on_write events.

Returns
current on_write_handler

sync_from(source: Events)→ None
Synchronises these Events with the source.

75

RsInstrument Python, Release 1.70.0

76 Chapter 20. RsInstrument.events

CHAPTER

TWENTYONE

INDEX AND SEARCH

• genindex

• search

77

RsInstrument Python, Release 1.70.0

78 Chapter 21. Index and search

PYTHON MODULE INDEX

r
RsInstrument, 69
RsInstrument.RsInstrument, 59

79

RsInstrument Python, Release 1.70.0

80 Python Module Index

INDEX

A
abbreviated_max_len_ascii (ScpiLogger attribute),

72
abbreviated_max_len_bin (ScpiLogger attribute), 72
abbreviated_max_len_list (ScpiLogger attribute),

72
assert_minimum_version() (RsInstrument static

method), 61
assign_lock() (RsInstrument method), 61

B
before_query_handler (Events property), 75
before_write_handler (Events property), 75
bin_float_numbers_format (RsInstrument property),

61
bin_int_numbers_format (RsInstrument property), 61
bin_line_block_size (ScpiLogger attribute), 72

C
clear_cached_entries() (ScpiLogger method), 72
clear_global_logging_relative_timestamp()

(RsInstrument class method), 61
clear_lock() (RsInstrument method), 61
clear_relative_timestamp() (ScpiLogger method),

72
clear_status() (RsInstrument method), 61
close() (RsInstrument method), 61

D
data_chunk_size (RsInstrument property), 61
default_mode (ScpiLogger attribute), 71
device_name (ScpiLogger attribute), 71
driver_version (RsInstrument property), 61

E
encoding (RsInstrument property), 61
error() (ScpiLogger method), 72
Events (class in RsInstrument.Fixed_Files.Events), 75
events (RsInstrument property), 61

F
file_exists() (RsInstrument method), 61

flush() (ScpiLogger method), 72
from_existing_session() (RsInstrument class

method), 61
full_instrument_model_name (RsInstrument prop-

erty), 61

G
get_file_size() (RsInstrument method), 62
get_global_logging_relative_timestamp()

(RsInstrument class method), 62
get_global_logging_target() (RsInstrument class

method), 62
get_last_sent_cmd() (RsInstrument method), 62
get_lock() (RsInstrument method), 62
get_logging_target() (ScpiLogger method), 71
get_relative_timestamp() (ScpiLogger method), 72
get_session_handle() (RsInstrument method), 62
get_total_execution_time() (RsInstrument

method), 62
get_total_time() (RsInstrument method), 62
get_total_time_startpoint() (RsInstrument

method), 62
go_to_local() (RsInstrument method), 62
go_to_remote() (RsInstrument method), 62

I
idn_string (RsInstrument property), 62
info() (ScpiLogger method), 72
info_raw() (ScpiLogger method), 72
instr_err_suppressor() (RsInstrument method), 62
instrument_firmware_version (RsInstrument prop-

erty), 63
instrument_model_name (RsInstrument property), 63
instrument_options (RsInstrument property), 63
instrument_serial_number (RsInstrument property),

63
instrument_status_checking (RsInstrument prop-

erty), 63
io_events_include_data (Events property), 75
is_connection_active() (RsInstrument method), 63

81

RsInstrument Python, Release 1.70.0

L
list_resources() (RsInstrument static method), 63
lock_resource() (RsInstrument method), 63
log_status_check_ok (ScpiLogger attribute), 72
log_to_console (ScpiLogger attribute), 71
log_to_console_and_udp (ScpiLogger attribute), 72
log_to_udp (ScpiLogger attribute), 71
logger (RsInstrument property), 63

M
manufacturer (RsInstrument property), 63
mode (ScpiLogger attribute), 71
module

RsInstrument, 69
RsInstrument.RsInstrument, 59

O
on_read_handler (Events property), 75
on_write_handler (Events property), 75
opc_query_after_write (RsInstrument property), 63
opc_sync_query_mechanism (RsInstrument property),

63
opc_timeout (RsInstrument property), 63

P
process_all_commands() (RsInstrument method), 64

Q
query() (RsInstrument method), 64
query_all_errors() (RsInstrument method), 64
query_all_errors_with_codes() (RsInstrument

method), 64
query_bin_block() (RsInstrument method), 64
query_bin_block_to_file() (RsInstrument method),

64
query_bin_block_to_file_with_opc() (RsInstru-

ment method), 64
query_bin_block_with_opc() (RsInstrument

method), 64
query_bin_or_ascii_float_list() (RsInstrument

method), 64
query_bin_or_ascii_float_list_with_opc()

(RsInstrument method), 64
query_bin_or_ascii_int_list() (RsInstrument

method), 65
query_bin_or_ascii_int_list_with_opc() (RsIn-

strument method), 65
query_bool() (RsInstrument method), 65
query_bool_list() (RsInstrument method), 65
query_bool_list_with_opc() (RsInstrument

method), 65
query_bool_with_opc() (RsInstrument method), 65
query_float() (RsInstrument method), 65

query_float_with_opc() (RsInstrument method), 65
query_int() (RsInstrument method), 65
query_int_with_opc() (RsInstrument method), 65
query_opc() (RsInstrument method), 65
query_str() (RsInstrument method), 65
query_str_list() (RsInstrument method), 66
query_str_list_with_opc() (RsInstrument method),

66
query_str_stripped() (RsInstrument method), 66
query_str_with_opc() (RsInstrument method), 66
query_stripped() (RsInstrument method), 66
query_with_opc() (RsInstrument method), 66

R
read_file_from_instrument_to_pc() (RsInstru-

ment method), 66
reconnect() (RsInstrument method), 66
reset() (RsInstrument method), 66
reset_time_statistics() (RsInstrument method), 67
resource_name (RsInstrument property), 67
restore_format_string() (ScpiLogger method), 72
RsInstrument

module, 69
RsInstrument (class in RsInstrument.RsInstrument), 59
RsInstrument.RsInstrument

module, 59

S
ScpiLogger (class in RsInstru-

ment.Internal.ScpiLogger), 71
self_test() (RsInstrument method), 67
send_file_from_pc_to_instrument() (RsInstru-

ment method), 67
set_format_string() (ScpiLogger method), 72
set_global_logging_relative_timestamp()

(RsInstrument class method), 67
set_global_logging_relative_timestamp_now()

(RsInstrument class method), 67
set_global_logging_target() (RsInstrument class

method), 67
set_logging_target() (ScpiLogger method), 71
set_logging_target_global() (ScpiLogger method),

71
set_relative_timestamp() (ScpiLogger method), 72
set_relative_timestamp_now() (ScpiLogger

method), 72
start() (ScpiLogger method), 71
stop() (ScpiLogger method), 71
supported_models (RsInstrument property), 67
sync_from() (Events method), 75

T
target_auto_flushing (ScpiLogger attribute), 73

82 Index

RsInstrument Python, Release 1.70.0

U
udp_port (ScpiLogger attribute), 73
unlock_resource() (RsInstrument method), 67

V
visa_manufacturer (RsInstrument property), 67
visa_timeout (RsInstrument property), 67
visa_tout_suppressor() (RsInstrument method), 67

W
write() (RsInstrument method), 67
write_bin_block() (RsInstrument method), 67
write_bin_block_from_file() (RsInstrument

method), 67
write_bool() (RsInstrument method), 68
write_bool_with_opc() (RsInstrument method), 68
write_float() (RsInstrument method), 68
write_float_with_opc() (RsInstrument method), 68
write_int() (RsInstrument method), 68
write_int_with_opc() (RsInstrument method), 68
write_str() (RsInstrument method), 68
write_str_with_opc() (RsInstrument method), 68
write_with_opc() (RsInstrument method), 68

Index 83

	Revision History
	RsInstrument
	Version history:

	Welcome to the RsInstrument Python Step-by-step Guide
	1. Introduction
	2. Installation
	Option 1 - Installing with pip.exe under Windows
	Option 2 - Installing in Pycharm
	Option 3 - Offline installation

	3. Finding available instruments
	4. Initiating instrument session
	Standard Session Initialization
	Selecting specific VISA
	No VISA Session
	Simulating Session
	Shared Session

	5. Basic I/O communication
	6. Error Checking
	7. Exception Handling
	7.1 Error Context Managers

	8. OPC-synchronized I/O Communication
	9. Querying Arrays
	Querying Float Arrays
	Querying Integer Arrays

	10. Querying Binary Data
	Querying to bytes
	Querying to PC files

	11. Writing Binary Data
	Writing from bytes data
	Writing from PC files

	12. Transferring Files
	Instrument -> PC
	PC -> Instrument

	13. Transferring Big Data with Progress
	14. Multithreading
	One instrument session, accessed from multiple threads
	Shared instrument session, accessed from multiple threads
	Multiple instrument sessions accessed from multiple threads

	15. Logging
	Logging to console
	Logging to files
	Integration with Python’s logging module
	Logging from multiple sessions
	Logging to UDP
	Logging from all instances
	Logging only errors
	Setting the logging format

	RsInstrument package
	Modules
	RsInstrument.RsInstrument
	Module contents

	RsInstrument.logger
	RsInstrument.events
	Index and search
	Python Module Index
	Index

